mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
199 lines
9.5 KiB
Python
199 lines
9.5 KiB
Python
#
|
|
# Copyright (c) 2017 Intel Corporation
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
from typing import Union
|
|
import numpy as np
|
|
|
|
from rl_coach.agents.policy_optimization_agent import PolicyOptimizationAgent
|
|
from rl_coach.architectures.embedder_parameters import InputEmbedderParameters
|
|
from rl_coach.architectures.head_parameters import ACERPolicyHeadParameters, QHeadParameters
|
|
from rl_coach.architectures.middleware_parameters import FCMiddlewareParameters
|
|
from rl_coach.base_parameters import AlgorithmParameters, NetworkParameters, AgentParameters
|
|
from rl_coach.core_types import Batch
|
|
from rl_coach.exploration_policies.categorical import CategoricalParameters
|
|
from rl_coach.memories.episodic.episodic_experience_replay import EpisodicExperienceReplayParameters
|
|
from rl_coach.spaces import DiscreteActionSpace
|
|
from rl_coach.utils import eps, last_sample
|
|
|
|
|
|
class ACERAlgorithmParameters(AlgorithmParameters):
|
|
"""
|
|
:param num_steps_between_gradient_updates: (int)
|
|
Every num_steps_between_gradient_updates transitions will be considered as a single batch and use for
|
|
accumulating gradients. This is also the number of steps used for bootstrapping according to the n-step formulation.
|
|
|
|
:param ratio_of_replay: (int)
|
|
The number of off-policy training iterations in each ACER iteration.
|
|
|
|
:param num_transitions_to_start_replay: (int)
|
|
Number of environment steps until ACER starts to train off-policy from the experience replay.
|
|
This emulates a heat-up phase where the agents learns only on-policy until there are enough transitions in
|
|
the experience replay to start the off-policy training.
|
|
|
|
:param rate_for_copying_weights_to_target: (float)
|
|
The rate of the exponential moving average for the average policy which is used for the trust region optimization.
|
|
The target network in this algorithm is used as the average policy.
|
|
|
|
:param importance_weight_truncation: (float)
|
|
The clipping constant for the importance weight truncation (not used in the Q-retrace calculation).
|
|
|
|
:param use_trust_region_optimization: (bool)
|
|
If set to True, the gradients of the network will be modified with a term dependant on the KL divergence between
|
|
the average policy and the current one, to bound the change of the policy during the network update.
|
|
|
|
:param max_KL_divergence: (float)
|
|
The upper bound parameter for the trust region optimization, use_trust_region_optimization needs to be set true
|
|
for this parameter to have an effect.
|
|
|
|
:param beta_entropy: (float)
|
|
An entropy regulaization term can be added to the loss function in order to control exploration. This term
|
|
is weighted using the beta value defined by beta_entropy.
|
|
"""
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.apply_gradients_every_x_episodes = 5
|
|
self.num_steps_between_gradient_updates = 5000
|
|
self.ratio_of_replay = 4
|
|
self.num_transitions_to_start_replay = 10000
|
|
self.rate_for_copying_weights_to_target = 0.01
|
|
self.importance_weight_truncation = 10.0
|
|
self.use_trust_region_optimization = True
|
|
self.max_KL_divergence = 1.0
|
|
self.beta_entropy = 0
|
|
|
|
|
|
class ACERNetworkParameters(NetworkParameters):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.input_embedders_parameters = {'observation': InputEmbedderParameters()}
|
|
self.middleware_parameters = FCMiddlewareParameters()
|
|
self.heads_parameters = [QHeadParameters(loss_weight=0.5), ACERPolicyHeadParameters(loss_weight=1.0)]
|
|
self.optimizer_type = 'Adam'
|
|
self.async_training = True
|
|
self.clip_gradients = 40.0
|
|
self.create_target_network = True
|
|
|
|
|
|
class ACERAgentParameters(AgentParameters):
|
|
def __init__(self):
|
|
super().__init__(algorithm=ACERAlgorithmParameters(),
|
|
exploration={DiscreteActionSpace: CategoricalParameters()},
|
|
memory=EpisodicExperienceReplayParameters(),
|
|
networks={"main": ACERNetworkParameters()})
|
|
@property
|
|
def path(self):
|
|
return 'rl_coach.agents.acer_agent:ACERAgent'
|
|
|
|
|
|
# Actor-Critic with Experience Replay - https://arxiv.org/abs/1611.01224
|
|
class ACERAgent(PolicyOptimizationAgent):
|
|
def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None):
|
|
super().__init__(agent_parameters, parent)
|
|
# signals definition
|
|
self.q_loss = self.register_signal('Q Loss')
|
|
self.policy_loss = self.register_signal('Policy Loss')
|
|
self.probability_loss = self.register_signal('Probability Loss')
|
|
self.bias_correction_loss = self.register_signal('Bias Correction Loss')
|
|
self.unclipped_grads = self.register_signal('Grads (unclipped)')
|
|
self.V_Values = self.register_signal('Values')
|
|
self.kl_divergence = self.register_signal('KL Divergence')
|
|
|
|
def _learn_from_batch(self, batch):
|
|
|
|
fetches = [self.networks['main'].online_network.output_heads[1].probability_loss,
|
|
self.networks['main'].online_network.output_heads[1].bias_correction_loss,
|
|
self.networks['main'].online_network.output_heads[1].kl_divergence]
|
|
|
|
# batch contains a list of transitions to learn from
|
|
network_keys = self.ap.network_wrappers['main'].input_embedders_parameters.keys()
|
|
|
|
# get the values for the current states
|
|
Q_values, policy_prob = self.networks['main'].online_network.predict(batch.states(network_keys))
|
|
avg_policy_prob = self.networks['main'].target_network.predict(batch.states(network_keys))[1]
|
|
current_state_values = np.sum(policy_prob * Q_values, axis=1)
|
|
|
|
actions = batch.actions()
|
|
num_transitions = batch.size
|
|
Q_head_targets = Q_values
|
|
|
|
Q_i = Q_values[np.arange(num_transitions), actions]
|
|
|
|
mu = batch.info('all_action_probabilities')
|
|
rho = policy_prob / (mu + eps)
|
|
rho_i = rho[np.arange(batch.size), actions]
|
|
|
|
rho_bar = np.minimum(1.0, rho_i)
|
|
|
|
if batch.game_overs()[-1]:
|
|
Qret = 0
|
|
else:
|
|
result = self.networks['main'].online_network.predict(last_sample(batch.next_states(network_keys)))
|
|
Qret = np.sum(result[0] * result[1], axis=1)[0]
|
|
|
|
for i in reversed(range(num_transitions)):
|
|
Qret = batch.rewards()[i] + self.ap.algorithm.discount * Qret
|
|
Q_head_targets[i, actions[i]] = Qret
|
|
Qret = rho_bar[i] * (Qret - Q_i[i]) + current_state_values[i]
|
|
|
|
Q_retrace = Q_head_targets[np.arange(num_transitions), actions]
|
|
|
|
# train
|
|
result = self.networks['main'].train_and_sync_networks({**batch.states(network_keys),
|
|
'output_1_0': actions,
|
|
'output_1_1': rho,
|
|
'output_1_2': rho_i,
|
|
'output_1_3': Q_values,
|
|
'output_1_4': Q_retrace,
|
|
'output_1_5': avg_policy_prob},
|
|
[Q_head_targets, current_state_values],
|
|
additional_fetches=fetches)
|
|
|
|
for network in self.networks.values():
|
|
network.update_target_network(self.ap.algorithm.rate_for_copying_weights_to_target)
|
|
|
|
# logging
|
|
total_loss, losses, unclipped_grads, fetch_result = result[:4]
|
|
self.q_loss.add_sample(losses[0])
|
|
self.policy_loss.add_sample(losses[1])
|
|
self.probability_loss.add_sample(fetch_result[0])
|
|
self.bias_correction_loss.add_sample(fetch_result[1])
|
|
self.unclipped_grads.add_sample(unclipped_grads)
|
|
self.V_Values.add_sample(current_state_values)
|
|
self.kl_divergence.add_sample(fetch_result[2])
|
|
|
|
return total_loss, losses, unclipped_grads
|
|
|
|
def learn_from_batch(self, batch):
|
|
# perform on-policy training iteration
|
|
total_loss, losses, unclipped_grads = self._learn_from_batch(batch)
|
|
|
|
if self.ap.algorithm.ratio_of_replay > 0 \
|
|
and self.memory.num_transitions() > self.ap.algorithm.num_transitions_to_start_replay:
|
|
n = np.random.poisson(self.ap.algorithm.ratio_of_replay)
|
|
# perform n off-policy training iterations
|
|
for _ in range(n):
|
|
new_batch = Batch(self.call_memory('sample', (self.ap.algorithm.num_steps_between_gradient_updates, True)))
|
|
result = self._learn_from_batch(new_batch)
|
|
total_loss += result[0]
|
|
losses += result[1]
|
|
unclipped_grads += result[2]
|
|
|
|
return total_loss, losses, unclipped_grads
|
|
|
|
def get_prediction(self, states):
|
|
tf_input_state = self.prepare_batch_for_inference(states, "main")
|
|
return self.networks['main'].online_network.predict(tf_input_state)[1:] # index 0 is the state value
|