mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
93 lines
3.8 KiB
Python
93 lines
3.8 KiB
Python
#
|
|
# Copyright (c) 2017 Intel Corporation
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
from typing import Union
|
|
|
|
import numpy as np
|
|
|
|
from rl_coach.agents.dqn_agent import DQNNetworkParameters, DQNAgentParameters
|
|
from rl_coach.agents.value_optimization_agent import ValueOptimizationAgent
|
|
from rl_coach.exploration_policies.bootstrapped import BootstrappedParameters
|
|
|
|
|
|
class BootstrappedDQNNetworkParameters(DQNNetworkParameters):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.heads_parameters[0].num_output_head_copies = 10
|
|
self.heads_parameters[0].rescale_gradient_from_head_by_factor = 1.0/self.heads_parameters[0].num_output_head_copies
|
|
|
|
|
|
class BootstrappedDQNAgentParameters(DQNAgentParameters):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.exploration = BootstrappedParameters()
|
|
self.network_wrappers = {"main": BootstrappedDQNNetworkParameters()}
|
|
|
|
@property
|
|
def path(self):
|
|
return 'rl_coach.agents.bootstrapped_dqn_agent:BootstrappedDQNAgent'
|
|
|
|
|
|
# Bootstrapped DQN - https://arxiv.org/pdf/1602.04621.pdf
|
|
class BootstrappedDQNAgent(ValueOptimizationAgent):
|
|
def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None):
|
|
super().__init__(agent_parameters, parent)
|
|
|
|
@property
|
|
def is_on_policy(self) -> bool:
|
|
return False
|
|
|
|
def reset_internal_state(self):
|
|
super().reset_internal_state()
|
|
self.exploration_policy.select_head()
|
|
|
|
def learn_from_batch(self, batch):
|
|
network_keys = self.ap.network_wrappers['main'].input_embedders_parameters.keys()
|
|
|
|
next_states_online_values = self.networks['main'].online_network.predict(batch.next_states(network_keys))
|
|
result = self.networks['main'].parallel_prediction([
|
|
(self.networks['main'].target_network, batch.next_states(network_keys)),
|
|
(self.networks['main'].online_network, batch.states(network_keys))
|
|
])
|
|
q_st_plus_1 = result[:self.ap.exploration.architecture_num_q_heads]
|
|
TD_targets = result[self.ap.exploration.architecture_num_q_heads:]
|
|
|
|
# add Q value samples for logging
|
|
|
|
# initialize with the current prediction so that we will
|
|
# only update the action that we have actually done in this transition
|
|
for i in range(batch.size):
|
|
mask = batch[i].info['mask']
|
|
for head_idx in range(self.ap.exploration.architecture_num_q_heads):
|
|
self.q_values.add_sample(TD_targets[head_idx])
|
|
|
|
if mask[head_idx] == 1:
|
|
selected_action = np.argmax(next_states_online_values[head_idx][i], 0)
|
|
TD_targets[head_idx][i, batch.actions()[i]] = \
|
|
batch.rewards()[i] + (1.0 - batch.game_overs()[i]) * self.ap.algorithm.discount \
|
|
* q_st_plus_1[head_idx][i][selected_action]
|
|
|
|
result = self.networks['main'].train_and_sync_networks(batch.states(network_keys), TD_targets)
|
|
total_loss, losses, unclipped_grads = result[:3]
|
|
|
|
return total_loss, losses, unclipped_grads
|
|
|
|
def observe(self, env_response):
|
|
mask = np.random.binomial(1, self.ap.exploration.bootstrapped_data_sharing_probability,
|
|
self.ap.exploration.architecture_num_q_heads)
|
|
env_response.info['mask'] = mask
|
|
return super().observe(env_response)
|