mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 11:10:20 +01:00
NOTE: tensorflow framework works fine if mxnet is not installed in env, but mxnet will not work if tensorflow is not installed because of the code in network_wrapper.
34 lines
1.3 KiB
Python
34 lines
1.3 KiB
Python
import os
|
|
import sys
|
|
|
|
from rl_coach.base_parameters import TaskParameters, Frameworks
|
|
|
|
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
|
|
import tensorflow as tf
|
|
from tensorflow import logging
|
|
import pytest
|
|
logging.set_verbosity(logging.INFO)
|
|
|
|
|
|
@pytest.mark.unit_test
|
|
def test_get_QActionStateValue_predictions():
|
|
tf.reset_default_graph()
|
|
from rl_coach.presets.CartPole_DQN import graph_manager as cartpole_dqn_graph_manager
|
|
assert cartpole_dqn_graph_manager
|
|
cartpole_dqn_graph_manager.create_graph(task_parameters=
|
|
TaskParameters(framework_type=Frameworks.tensorflow,
|
|
experiment_path="./experiments/test"))
|
|
cartpole_dqn_graph_manager.improve_steps.num_steps = 1
|
|
cartpole_dqn_graph_manager.steps_between_evaluation_periods.num_steps = 5
|
|
|
|
# graph_manager.improve()
|
|
#
|
|
# agent = graph_manager.level_managers[0].composite_agents['simple_rl_agent'].agents['simple_rl_agent/agent']
|
|
# some_state = agent.memory.sample(1)[0].state
|
|
# cartpole_dqn_predictions = agent.get_predictions(states=some_state, prediction_type=QActionStateValue)
|
|
# assert cartpole_dqn_predictions.shape == (1, 2)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_get_QActionStateValue_predictions()
|