mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 11:10:20 +01:00
74 lines
2.7 KiB
Python
74 lines
2.7 KiB
Python
#
|
|
# Copyright (c) 2017 Intel Corporation
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
import tensorflow as tf
|
|
import numpy as np
|
|
|
|
|
|
class MiddlewareEmbedder(object):
|
|
def __init__(self, activation_function=tf.nn.relu, name="middleware_embedder"):
|
|
self.name = name
|
|
self.input = None
|
|
self.output = None
|
|
self.activation_function = activation_function
|
|
|
|
def __call__(self, input_layer):
|
|
with tf.variable_scope(self.get_name()):
|
|
self.input = input_layer
|
|
self._build_module()
|
|
|
|
return self.input, self.output
|
|
|
|
def _build_module(self):
|
|
pass
|
|
|
|
def get_name(self):
|
|
return self.name
|
|
|
|
|
|
class LSTM_Embedder(MiddlewareEmbedder):
|
|
def _build_module(self):
|
|
"""
|
|
self.state_in: tuple of placeholders containing the initial state
|
|
self.state_out: tuple of output state
|
|
|
|
todo: it appears that the shape of the output is batch, feature
|
|
the code here seems to be slicing off the first element in the batch
|
|
which would definitely be wrong. need to double check the shape
|
|
"""
|
|
|
|
middleware = tf.layers.dense(self.input, 512, activation=self.activation_function)
|
|
lstm_cell = tf.contrib.rnn.BasicLSTMCell(256, state_is_tuple=True)
|
|
self.c_init = np.zeros((1, lstm_cell.state_size.c), np.float32)
|
|
self.h_init = np.zeros((1, lstm_cell.state_size.h), np.float32)
|
|
self.state_init = [self.c_init, self.h_init]
|
|
self.c_in = tf.placeholder(tf.float32, [1, lstm_cell.state_size.c])
|
|
self.h_in = tf.placeholder(tf.float32, [1, lstm_cell.state_size.h])
|
|
self.state_in = (self.c_in, self.h_in)
|
|
rnn_in = tf.expand_dims(middleware, [0])
|
|
step_size = tf.shape(middleware)[:1]
|
|
state_in = tf.contrib.rnn.LSTMStateTuple(self.c_in, self.h_in)
|
|
lstm_outputs, lstm_state = tf.nn.dynamic_rnn(
|
|
lstm_cell, rnn_in, initial_state=state_in, sequence_length=step_size, time_major=False)
|
|
lstm_c, lstm_h = lstm_state
|
|
self.state_out = (lstm_c[:1, :], lstm_h[:1, :])
|
|
self.output = tf.reshape(lstm_outputs, [-1, 256])
|
|
|
|
|
|
class FC_Embedder(MiddlewareEmbedder):
|
|
def _build_module(self):
|
|
self.output = tf.layers.dense(self.input, 512, activation=self.activation_function)
|