mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 11:10:20 +01:00
* save filters internal state * moving the restore to be made from within NumpyRunningStats
210 lines
9.7 KiB
Python
210 lines
9.7 KiB
Python
#
|
|
# Copyright (c) 2017 Intel Corporation
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
import os
|
|
import pickle
|
|
from typing import Union
|
|
|
|
import numpy as np
|
|
|
|
from rl_coach.agents.value_optimization_agent import ValueOptimizationAgent
|
|
from rl_coach.architectures.embedder_parameters import InputEmbedderParameters
|
|
from rl_coach.architectures.head_parameters import DNDQHeadParameters
|
|
from rl_coach.architectures.middleware_parameters import FCMiddlewareParameters
|
|
from rl_coach.base_parameters import AlgorithmParameters, NetworkParameters, AgentParameters
|
|
|
|
from rl_coach.core_types import RunPhase, EnvironmentSteps, Episode, StateType
|
|
from rl_coach.exploration_policies.e_greedy import EGreedyParameters
|
|
from rl_coach.logger import screen
|
|
from rl_coach.memories.episodic.episodic_experience_replay import EpisodicExperienceReplayParameters, MemoryGranularity
|
|
from rl_coach.schedules import ConstantSchedule
|
|
|
|
|
|
class NECNetworkParameters(NetworkParameters):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.input_embedders_parameters = {'observation': InputEmbedderParameters()}
|
|
self.middleware_parameters = FCMiddlewareParameters()
|
|
self.heads_parameters = [DNDQHeadParameters()]
|
|
self.optimizer_type = 'Adam'
|
|
|
|
|
|
class NECAlgorithmParameters(AlgorithmParameters):
|
|
"""
|
|
:param dnd_size: (int)
|
|
Defines the number of transitions that will be stored in each one of the DNDs. Note that the total number
|
|
of transitions that will be stored is dnd_size x num_actions.
|
|
|
|
:param l2_norm_added_delta: (float)
|
|
A small value that will be added when calculating the weight of each of the DND entries. This follows the
|
|
:math:`\delta` patameter defined in the paper.
|
|
|
|
:param new_value_shift_coefficient: (float)
|
|
In the case where a ew embedding that was added to the DND was already present, the value that will be stored
|
|
in the DND is a mix between the existing value and the new value. The mix rate is defined by
|
|
new_value_shift_coefficient.
|
|
|
|
:param number_of_knn: (int)
|
|
The number of neighbors that will be retrieved for each DND query.
|
|
|
|
:param DND_key_error_threshold: (float)
|
|
When the DND is queried for a specific embedding, this threshold will be used to determine if the embedding
|
|
exists in the DND, since exact matches of embeddings are very rare.
|
|
|
|
:param propagate_updates_to_DND: (bool)
|
|
If set to True, when the gradients of the network will be calculated, the gradients will also be
|
|
backpropagated through the keys of the DND. The keys will then be updated as well, as if they were regular
|
|
network weights.
|
|
|
|
:param n_step: (int)
|
|
The bootstrap length that will be used when calculating the state values to store in the DND.
|
|
|
|
:param bootstrap_total_return_from_old_policy: (bool)
|
|
If set to True, the bootstrap that will be used to calculate each state-action value, is the network value
|
|
when the state was first seen, and not the latest, most up-to-date network value.
|
|
"""
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.dnd_size = 500000
|
|
self.l2_norm_added_delta = 0.001
|
|
self.new_value_shift_coefficient = 0.1
|
|
self.number_of_knn = 50
|
|
self.DND_key_error_threshold = 0
|
|
self.num_consecutive_playing_steps = EnvironmentSteps(4)
|
|
self.propagate_updates_to_DND = False
|
|
self.n_step = 100
|
|
self.bootstrap_total_return_from_old_policy = True
|
|
|
|
|
|
class NECMemoryParameters(EpisodicExperienceReplayParameters):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.max_size = (MemoryGranularity.Transitions, 100000)
|
|
|
|
|
|
class NECAgentParameters(AgentParameters):
|
|
def __init__(self):
|
|
super().__init__(algorithm=NECAlgorithmParameters(),
|
|
exploration=EGreedyParameters(),
|
|
memory=NECMemoryParameters(),
|
|
networks={"main": NECNetworkParameters()})
|
|
self.exploration.epsilon_schedule = ConstantSchedule(0.1)
|
|
self.exploration.evaluation_epsilon = 0.01
|
|
|
|
@property
|
|
def path(self):
|
|
return 'rl_coach.agents.nec_agent:NECAgent'
|
|
|
|
|
|
# Neural Episodic Control - https://arxiv.org/pdf/1703.01988.pdf
|
|
class NECAgent(ValueOptimizationAgent):
|
|
def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None):
|
|
super().__init__(agent_parameters, parent)
|
|
self.current_episode_state_embeddings = []
|
|
self.training_started = False
|
|
self.current_episode_buffer = \
|
|
Episode(discount=self.ap.algorithm.discount,
|
|
n_step=self.ap.algorithm.n_step,
|
|
bootstrap_total_return_from_old_policy=self.ap.algorithm.bootstrap_total_return_from_old_policy)
|
|
|
|
def learn_from_batch(self, batch):
|
|
if not self.networks['main'].online_network.output_heads[0].DND.has_enough_entries(self.ap.algorithm.number_of_knn):
|
|
return 0, [], 0
|
|
else:
|
|
if not self.training_started:
|
|
self.training_started = True
|
|
screen.log_title("Finished collecting initial entries in DND. Starting to train network...")
|
|
|
|
network_keys = self.ap.network_wrappers['main'].input_embedders_parameters.keys()
|
|
|
|
TD_targets = self.networks['main'].online_network.predict(batch.states(network_keys))
|
|
bootstrapped_return_from_old_policy = batch.n_step_discounted_rewards()
|
|
# only update the action that we have actually done in this transition
|
|
for i in range(self.ap.network_wrappers['main'].batch_size):
|
|
TD_targets[i, batch.actions()[i]] = bootstrapped_return_from_old_policy[i]
|
|
|
|
# set the gradients to fetch for the DND update
|
|
fetches = []
|
|
head = self.networks['main'].online_network.output_heads[0]
|
|
if self.ap.algorithm.propagate_updates_to_DND:
|
|
fetches = [head.dnd_embeddings_grad, head.dnd_values_grad, head.dnd_indices]
|
|
|
|
# train the neural network
|
|
result = self.networks['main'].train_and_sync_networks(batch.states(network_keys), TD_targets, fetches)
|
|
|
|
total_loss, losses, unclipped_grads = result[:3]
|
|
|
|
# update the DND keys and values using the extracted gradients
|
|
if self.ap.algorithm.propagate_updates_to_DND:
|
|
embedding_gradients = np.swapaxes(result[-1][0], 0, 1)
|
|
value_gradients = np.swapaxes(result[-1][1], 0, 1)
|
|
indices = np.swapaxes(result[-1][2], 0, 1)
|
|
head.DND.update_keys_and_values(batch.actions(), embedding_gradients, value_gradients, indices)
|
|
|
|
return total_loss, losses, unclipped_grads
|
|
|
|
def act(self):
|
|
if self.phase == RunPhase.HEATUP:
|
|
# get embedding in heatup (otherwise we get it through get_prediction)
|
|
embedding = self.networks['main'].online_network.predict(
|
|
self.prepare_batch_for_inference(self.curr_state, 'main'),
|
|
outputs=self.networks['main'].online_network.state_embedding)
|
|
self.current_episode_state_embeddings.append(embedding)
|
|
|
|
return super().act()
|
|
|
|
def get_all_q_values_for_states(self, states: StateType):
|
|
# we need to store the state embeddings regardless if the action is random or not
|
|
return self.get_prediction(states)
|
|
|
|
def get_prediction(self, states):
|
|
# get the actions q values and the state embedding
|
|
embedding, actions_q_values = self.networks['main'].online_network.predict(
|
|
self.prepare_batch_for_inference(states, 'main'),
|
|
outputs=[self.networks['main'].online_network.state_embedding,
|
|
self.networks['main'].online_network.output_heads[0].output]
|
|
)
|
|
if self.phase != RunPhase.TEST:
|
|
# store the state embedding for inserting it to the DND later
|
|
self.current_episode_state_embeddings.append(embedding.squeeze())
|
|
actions_q_values = actions_q_values[0][0]
|
|
return actions_q_values
|
|
|
|
def reset_internal_state(self):
|
|
super().reset_internal_state()
|
|
self.current_episode_state_embeddings = []
|
|
self.current_episode_buffer = \
|
|
Episode(discount=self.ap.algorithm.discount,
|
|
n_step=self.ap.algorithm.n_step,
|
|
bootstrap_total_return_from_old_policy=self.ap.algorithm.bootstrap_total_return_from_old_policy)
|
|
|
|
def handle_episode_ended(self):
|
|
super().handle_episode_ended()
|
|
|
|
# get the last full episode that we have collected
|
|
episode = self.call_memory('get_last_complete_episode')
|
|
if episode is not None and self.phase != RunPhase.TEST:
|
|
assert len(self.current_episode_state_embeddings) == episode.length()
|
|
discounted_rewards = episode.get_transitions_attribute('n_step_discounted_rewards')
|
|
actions = episode.get_transitions_attribute('action')
|
|
self.networks['main'].online_network.output_heads[0].DND.add(self.current_episode_state_embeddings,
|
|
actions, discounted_rewards)
|
|
|
|
def save_checkpoint(self, checkpoint_id):
|
|
super().save_checkpoint(checkpoint_id)
|
|
with open(os.path.join(self.ap.task_parameters.checkpoint_save_dir, str(checkpoint_id) + '.dnd'), 'wb') as f:
|
|
pickle.dump(self.networks['main'].online_network.output_heads[0].DND, f, pickle.HIGHEST_PROTOCOL)
|