1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 11:10:20 +01:00
Files
coach/dashboard_components/signals_file_base.py
itaicaspi-intel a57b7004a8 updating dashboard
2018-05-09 09:26:15 +03:00

132 lines
4.9 KiB
Python

import numpy
from bokeh.models import ColumnDataSource
from bokeh.palettes import Dark2
from dashboard_components.globals import x_axis, x_axis_options, show_spinner
from dashboard_components.signals import Signal
import numpy as np
import copy
class SignalsFileBase:
def __init__(self, plot):
self.plot = plot
self.full_csv_path = ""
self.dir = ""
self.filename = ""
self.signals_averaging_window = 1
self.show_bollinger_bands = False
self.csv = None
self.bokeh_source = None
self.bokeh_source_orig = None
self.last_modified = None
self.signals = {}
self.separate_files = False
self.last_reload_data_fix = False
def load_csv(self):
pass
def update_x_axis_index(self):
global x_axis
self.bokeh_source_orig.data['index'] = self.bokeh_source_orig.data[x_axis[0]]
self.bokeh_source.data['index'] = self.bokeh_source.data[x_axis[0]]
def toggle_y_axis(self, signal_name=None):
if signal_name:
self.signals[signal_name].toggle_axis()
else:
for signal in self.signals.values():
if signal.selected:
signal.toggle_axis()
def update_source_and_signals(self):
# create bokeh data sources
self.bokeh_source_orig = ColumnDataSource(self.csv)
self.bokeh_source_orig.data['index'] = self.bokeh_source_orig.data[x_axis[0]]
if self.bokeh_source is None:
self.bokeh_source = ColumnDataSource(self.csv)
else:
# smooth the data if necessary
self.change_averaging_window(self.signals_averaging_window, force=True)
self.update_x_axis_index()
# create all the signals
if len(self.signals.keys()) == 0:
self.signals = {}
unique_signal_names = []
for name in self.csv.columns:
if len(name.split('/')) == 1:
unique_signal_names.append(name)
else:
unique_signal_names.append('/'.join(name.split('/')[:-1]))
unique_signal_names = list(set(unique_signal_names))
for signal_name in unique_signal_names:
self.signals[signal_name] = Signal(signal_name, self, self.plot)
def load(self):
self.load_csv()
self.update_source_and_signals()
def reload_data(self):
# this function is a workaround to reload the data of all the signals
# if the data doesn't change, bokeh does not refreshes the line
temp_data = self.bokeh_source.data.copy()
for col in self.bokeh_source.data.keys():
if not self.last_reload_data_fix:
temp_data[col] = temp_data[col][:-1]
self.last_reload_data_fix = not self.last_reload_data_fix
self.bokeh_source.data = temp_data
def change_averaging_window(self, new_size, force=False, signals=None):
if force or self.signals_averaging_window != new_size:
self.signals_averaging_window = new_size
win = np.ones(new_size) / new_size
temp_data = self.bokeh_source_orig.data.copy()
for col in self.bokeh_source.data.keys():
if col == 'index' or col in x_axis_options \
or (signals and not any(col in signal for signal in signals)):
temp_data[col] = temp_data[col][:-new_size]
continue
temp_data[col] = np.convolve(self.bokeh_source_orig.data[col], win, mode='same')[:-new_size]
self.bokeh_source.data = temp_data
# smooth bollinger bands
for signal in self.signals.values():
if signal.has_bollinger_bands:
signal.set_bands_source()
def hide_all_signals(self):
for signal_name in self.signals.keys():
self.set_signal_selection(signal_name, False)
def set_signal_selection(self, signal_name, val):
self.signals[signal_name].set_selected(val)
def change_bollinger_bands_state(self, new_state):
self.show_bollinger_bands = new_state
for signal in self.signals.values():
signal.change_bollinger_bands_state(new_state)
def file_was_modified_on_disk(self):
pass
def get_range_of_selected_signals_on_axis(self, axis, selected_signal=None):
max_val = -float('inf')
min_val = float('inf')
for signal in self.signals.values():
if (selected_signal and signal.name == selected_signal) or (signal.selected and signal.axis == axis):
max_val = max(max_val, signal.max_val)
min_val = min(min_val, signal.min_val)
return min_val, max_val
def get_selected_signals(self):
signals = []
for signal in self.signals.values():
if signal.selected:
signals.append(signal)
return signals
def show_files_separately(self, val):
pass