1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 11:10:20 +01:00
Files
coach/rl_coach/agents/ddpg_agent.py

190 lines
8.4 KiB
Python

#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import copy
from typing import Union
from collections import OrderedDict
import numpy as np
from rl_coach.agents.actor_critic_agent import ActorCriticAgent
from rl_coach.agents.agent import Agent
from rl_coach.architectures.embedder_parameters import InputEmbedderParameters
from rl_coach.architectures.head_parameters import DDPGActorHeadParameters, VHeadParameters
from rl_coach.architectures.middleware_parameters import FCMiddlewareParameters
from rl_coach.base_parameters import NetworkParameters, AlgorithmParameters, \
AgentParameters, EmbedderScheme
from rl_coach.core_types import ActionInfo, EnvironmentSteps
from rl_coach.exploration_policies.ou_process import OUProcessParameters
from rl_coach.memories.episodic.episodic_experience_replay import EpisodicExperienceReplayParameters
from rl_coach.spaces import BoxActionSpace, GoalsSpace
class DDPGCriticNetworkParameters(NetworkParameters):
def __init__(self):
super().__init__()
self.input_embedders_parameters = {'observation': InputEmbedderParameters(batchnorm=True),
'action': InputEmbedderParameters(scheme=EmbedderScheme.Shallow)}
self.middleware_parameters = FCMiddlewareParameters()
self.heads_parameters = [VHeadParameters()]
self.optimizer_type = 'Adam'
self.batch_size = 64
self.async_training = False
self.learning_rate = 0.001
self.create_target_network = True
self.shared_optimizer = True
self.scale_down_gradients_by_number_of_workers_for_sync_training = False
class DDPGActorNetworkParameters(NetworkParameters):
def __init__(self):
super().__init__()
self.input_embedders_parameters = {'observation': InputEmbedderParameters(batchnorm=True)}
self.middleware_parameters = FCMiddlewareParameters(batchnorm=True)
self.heads_parameters = [DDPGActorHeadParameters()]
self.optimizer_type = 'Adam'
self.batch_size = 64
self.async_training = False
self.learning_rate = 0.0001
self.create_target_network = True
self.shared_optimizer = True
self.scale_down_gradients_by_number_of_workers_for_sync_training = False
class DDPGAlgorithmParameters(AlgorithmParameters):
def __init__(self):
super().__init__()
self.num_steps_between_copying_online_weights_to_target = EnvironmentSteps(1)
self.rate_for_copying_weights_to_target = 0.001
self.num_consecutive_playing_steps = EnvironmentSteps(1)
self.use_target_network_for_evaluation = False
self.action_penalty = 0
self.clip_critic_targets = None # expected to be a tuple of the form (min_clip_value, max_clip_value) or None
self.use_non_zero_discount_for_terminal_states = False
class DDPGAgentParameters(AgentParameters):
def __init__(self):
super().__init__(algorithm=DDPGAlgorithmParameters(),
exploration=OUProcessParameters(),
memory=EpisodicExperienceReplayParameters(),
networks=OrderedDict([("actor", DDPGActorNetworkParameters()),
("critic", DDPGCriticNetworkParameters())]))
@property
def path(self):
return 'rl_coach.agents.ddpg_agent:DDPGAgent'
# Deep Deterministic Policy Gradients Network - https://arxiv.org/pdf/1509.02971.pdf
class DDPGAgent(ActorCriticAgent):
def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None):
super().__init__(agent_parameters, parent)
self.q_values = self.register_signal("Q")
self.TD_targets_signal = self.register_signal("TD targets")
self.action_signal = self.register_signal("actions")
def learn_from_batch(self, batch):
actor = self.networks['actor']
critic = self.networks['critic']
actor_keys = self.ap.network_wrappers['actor'].input_embedders_parameters.keys()
critic_keys = self.ap.network_wrappers['critic'].input_embedders_parameters.keys()
# TD error = r + discount*max(q_st_plus_1) - q_st
next_actions, actions_mean = actor.parallel_prediction([
(actor.target_network, batch.next_states(actor_keys)),
(actor.online_network, batch.states(actor_keys))
])
critic_inputs = copy.copy(batch.next_states(critic_keys))
critic_inputs['action'] = next_actions
q_st_plus_1 = critic.target_network.predict(critic_inputs)
# calculate the bootstrapped TD targets while discounting terminal states according to
# use_non_zero_discount_for_terminal_states
if self.ap.algorithm.use_non_zero_discount_for_terminal_states:
TD_targets = batch.rewards(expand_dims=True) + self.ap.algorithm.discount * q_st_plus_1
else:
TD_targets = batch.rewards(expand_dims=True) + \
(1.0 - batch.game_overs(expand_dims=True)) * self.ap.algorithm.discount * q_st_plus_1
# clip the TD targets to prevent overestimation errors
if self.ap.algorithm.clip_critic_targets:
TD_targets = np.clip(TD_targets, *self.ap.algorithm.clip_critic_targets)
self.TD_targets_signal.add_sample(TD_targets)
# get the gradients of the critic output with respect to the action
critic_inputs = copy.copy(batch.states(critic_keys))
critic_inputs['action'] = actions_mean
action_gradients = critic.online_network.predict(critic_inputs,
outputs=critic.online_network.gradients_wrt_inputs[0]['action'])
# train the critic
critic_inputs = copy.copy(batch.states(critic_keys))
critic_inputs['action'] = batch.actions(len(batch.actions().shape) == 1)
result = critic.train_and_sync_networks(critic_inputs, TD_targets)
total_loss, losses, unclipped_grads = result[:3]
# apply the gradients from the critic to the actor
initial_feed_dict = {actor.online_network.gradients_weights_ph[0]: -action_gradients}
gradients = actor.online_network.predict(batch.states(actor_keys),
outputs=actor.online_network.weighted_gradients[0],
initial_feed_dict=initial_feed_dict)
if actor.has_global:
actor.apply_gradients_to_global_network(gradients)
actor.update_online_network()
else:
actor.apply_gradients_to_online_network(gradients)
return total_loss, losses, unclipped_grads
def train(self):
return Agent.train(self)
def choose_action(self, curr_state):
if not (isinstance(self.spaces.action, BoxActionSpace) or isinstance(self.spaces.action, GoalsSpace)):
raise ValueError("DDPG works only for continuous control problems")
# convert to batch so we can run it through the network
tf_input_state = self.prepare_batch_for_inference(curr_state, 'actor')
if self.ap.algorithm.use_target_network_for_evaluation:
actor_network = self.networks['actor'].target_network
else:
actor_network = self.networks['actor'].online_network
action_values = actor_network.predict(tf_input_state).squeeze()
action = self.exploration_policy.get_action(action_values)
self.action_signal.add_sample(action)
# get q value
tf_input_state = self.prepare_batch_for_inference(curr_state, 'critic')
action_batch = np.expand_dims(action, 0)
if type(action) != np.ndarray:
action_batch = np.array([[action]])
tf_input_state['action'] = action_batch
q_value = self.networks['critic'].online_network.predict(tf_input_state)[0]
self.q_values.add_sample(q_value)
action_info = ActionInfo(action=action,
action_value=q_value)
return action_info