1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 19:20:19 +01:00
Files
coach/rl_coach/architectures/network_wrapper.py
2018-10-02 13:43:36 +03:00

235 lines
10 KiB
Python

#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import List, Tuple
from rl_coach.base_parameters import Frameworks, AgentParameters
from rl_coach.logger import failed_imports
from rl_coach.spaces import SpacesDefinition
try:
import tensorflow as tf
from rl_coach.architectures.tensorflow_components.general_network import GeneralTensorFlowNetwork
except ImportError:
failed_imports.append("TensorFlow")
class NetworkWrapper(object):
"""
Contains multiple networks and managers syncing and gradient updates
between them.
"""
def __init__(self, agent_parameters: AgentParameters, has_target: bool, has_global: bool, name: str,
spaces: SpacesDefinition, replicated_device=None, worker_device=None):
self.ap = agent_parameters
self.network_parameters = self.ap.network_wrappers[name]
self.has_target = has_target
self.has_global = has_global
self.name = name
self.sess = None
if self.network_parameters.framework == Frameworks.tensorflow:
general_network = GeneralTensorFlowNetwork
else:
raise Exception("{} Framework is not supported"
.format(Frameworks().to_string(self.network_parameters.framework)))
with tf.variable_scope("{}/{}".format(self.ap.full_name_id, name)):
# Global network - the main network shared between threads
self.global_network = None
if self.has_global:
# we assign the parameters of this network on the parameters server
with tf.device(replicated_device):
self.global_network = general_network(agent_parameters=agent_parameters,
name='{}/global'.format(name),
global_network=None,
network_is_local=False,
spaces=spaces,
network_is_trainable=True)
# Online network - local copy of the main network used for playing
self.online_network = None
with tf.device(worker_device):
self.online_network = general_network(agent_parameters=agent_parameters,
name='{}/online'.format(name),
global_network=self.global_network,
network_is_local=True,
spaces=spaces,
network_is_trainable=True)
# Target network - a local, slow updating network used for stabilizing the learning
self.target_network = None
if self.has_target:
with tf.device(worker_device):
self.target_network = general_network(agent_parameters=agent_parameters,
name='{}/target'.format(name),
global_network=self.global_network,
network_is_local=True,
spaces=spaces,
network_is_trainable=False)
def sync(self):
"""
Initializes the weights of the networks to match each other
:return:
"""
self.update_online_network()
self.update_target_network()
def update_target_network(self, rate=1.0):
"""
Copy weights: online network >>> target network
:param rate: the rate of copying the weights - 1 for copying exactly
"""
if self.target_network:
self.target_network.set_weights(self.online_network.get_weights(), rate)
def update_online_network(self, rate=1.0):
"""
Copy weights: global network >>> online network
:param rate: the rate of copying the weights - 1 for copying exactly
"""
if self.global_network:
self.online_network.set_weights(self.global_network.get_weights(), rate)
def apply_gradients_to_global_network(self, gradients=None):
"""
Apply gradients from the online network on the global network
:param gradients: optional gradients that will be used instead of teh accumulated gradients
:return:
"""
if gradients is None:
gradients = self.online_network.accumulated_gradients
if self.network_parameters.shared_optimizer:
self.global_network.apply_gradients(gradients)
else:
self.online_network.apply_gradients(gradients)
def apply_gradients_to_online_network(self, gradients=None):
"""
Apply gradients from the online network on itself
:return:
"""
if gradients is None:
gradients = self.online_network.accumulated_gradients
self.online_network.apply_gradients(gradients)
def train_and_sync_networks(self, inputs, targets, additional_fetches=[], importance_weights=None):
"""
A generic training function that enables multi-threading training using a global network if necessary.
:param inputs: The inputs for the network.
:param targets: The targets corresponding to the given inputs
:param additional_fetches: Any additional tensor the user wants to fetch
:param importance_weights: A coefficient for each sample in the batch, which will be used to rescale the loss
error of this sample. If it is not given, the samples losses won't be scaled
:return: The loss of the training iteration
"""
result = self.online_network.accumulate_gradients(inputs, targets, additional_fetches=additional_fetches,
importance_weights=importance_weights, no_accumulation=True)
self.apply_gradients_and_sync_networks(reset_gradients=False)
return result
def apply_gradients_and_sync_networks(self, reset_gradients=True):
"""
Applies the gradients accumulated in the online network to the global network or to itself and syncs the
networks if necessary
:param reset_gradients: If set to True, the accumulated gradients wont be reset to 0 after applying them to
the network. this is useful when the accumulated gradients are overwritten instead
if accumulated by the accumulate_gradients function. this allows reducing time
complexity for this function by around 10%
"""
if self.global_network:
self.apply_gradients_to_global_network()
if reset_gradients:
self.online_network.reset_accumulated_gradients()
self.update_online_network()
else:
if reset_gradients:
self.online_network.apply_and_reset_gradients(self.online_network.accumulated_gradients)
else:
self.online_network.apply_gradients(self.online_network.accumulated_gradients)
def parallel_prediction(self, network_input_tuples: List[Tuple]):
"""
Run several network prediction in parallel. Currently this only supports running each of the network once.
:param network_input_tuples: a list of tuples where the first element is the network (online_network,
target_network or global_network) and the second element is the inputs
:return: the outputs of all the networks in the same order as the inputs were given
"""
feed_dict = {}
fetches = []
for idx, (network, input) in enumerate(network_input_tuples):
feed_dict.update(network.create_feed_dict(input))
fetches += network.outputs
outputs = self.sess.run(fetches, feed_dict)
return outputs
def get_local_variables(self):
"""
Get all the variables that are local to the thread
:return: a list of all the variables that are local to the thread
"""
local_variables = [v for v in tf.local_variables() if self.online_network.name in v.name]
if self.has_target:
local_variables += [v for v in tf.local_variables() if self.target_network.name in v.name]
return local_variables
def get_global_variables(self):
"""
Get all the variables that are shared between threads
:return: a list of all the variables that are shared between threads
"""
global_variables = [v for v in tf.global_variables() if self.global_network.name in v.name]
return global_variables
def set_is_training(self, state: bool):
"""
Set the phase of the network between training and testing
:param state: The current state (True = Training, False = Testing)
:return: None
"""
self.online_network.set_is_training(state)
if self.has_target:
self.target_network.set_is_training(state)
def set_session(self, sess):
self.sess = sess
self.online_network.set_session(sess)
if self.global_network:
self.global_network.set_session(sess)
if self.target_network:
self.target_network.set_session(sess)
def __str__(self):
sub_networks = []
if self.global_network:
sub_networks.append("global network")
if self.online_network:
sub_networks.append("online network")
if self.target_network:
sub_networks.append("target network")
result = []
result.append("Network: {}, Copies: {} ({})".format(self.name, len(sub_networks), ' | '.join(sub_networks)))
result.append("-"*len(result[-1]))
result.append(str(self.online_network))
result.append("")
return '\n'.join(result)