1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 11:10:20 +01:00
Files
coach/rl_coach/architectures/tensorflow_components/general_network.py

391 lines
20 KiB
Python

#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import copy
from typing import Dict
import numpy as np
import tensorflow as tf
from rl_coach.architectures.embedder_parameters import InputEmbedderParameters
from rl_coach.architectures.head_parameters import HeadParameters
from rl_coach.architectures.middleware_parameters import MiddlewareParameters
from rl_coach.architectures.tensorflow_components.architecture import TensorFlowArchitecture
from rl_coach.base_parameters import AgentParameters, EmbeddingMergerType
from rl_coach.core_types import PredictionType
from rl_coach.spaces import SpacesDefinition, PlanarMapsObservationSpace
from rl_coach.utils import get_all_subclasses, dynamic_import_and_instantiate_module_from_params, indent_string
class GeneralTensorFlowNetwork(TensorFlowArchitecture):
"""
A generalized version of all possible networks implemented using tensorflow.
"""
def __init__(self, agent_parameters: AgentParameters, spaces: SpacesDefinition, name: str,
global_network=None, network_is_local: bool=True, network_is_trainable: bool=False):
"""
:param agent_parameters: the agent parameters
:param spaces: the spaces definition of the agent
:param name: the name of the network
:param global_network: the global network replica that is shared between all the workers
:param network_is_local: is the network global (shared between workers) or local (dedicated to the worker)
:param network_is_trainable: is the network trainable (we can apply gradients on it)
"""
self.global_network = global_network
self.network_is_local = network_is_local
self.network_wrapper_name = name.split('/')[0]
self.network_parameters = agent_parameters.network_wrappers[self.network_wrapper_name]
self.num_heads_per_network = 1 if self.network_parameters.use_separate_networks_per_head else \
len(self.network_parameters.heads_parameters)
self.num_networks = 1 if not self.network_parameters.use_separate_networks_per_head else \
len(self.network_parameters.heads_parameters)
self.gradients_from_head_rescalers = []
self.gradients_from_head_rescalers_placeholders = []
self.update_head_rescaler_value_ops = []
self.adaptive_learning_rate_scheme = None
self.current_learning_rate = None
# init network modules containers
self.input_embedders = []
self.output_heads = []
super().__init__(agent_parameters, spaces, name, global_network,
network_is_local, network_is_trainable)
def fill_return_types():
ret_dict = {}
for cls in get_all_subclasses(PredictionType):
ret_dict[cls] = []
components = self.input_embedders + [self.middleware] + self.output_heads
for component in components:
if not hasattr(component, 'return_type'):
raise ValueError("{} has no return_type attribute. This should not happen.")
if component.return_type is not None:
ret_dict[component.return_type].append(component)
return ret_dict
self.available_return_types = fill_return_types()
self.is_training = None
def predict_with_prediction_type(self, states: Dict[str, np.ndarray],
prediction_type: PredictionType) -> Dict[str, np.ndarray]:
"""
Search for a component[s] which has a return_type set to the to the requested PredictionType, and get
predictions for it.
:param states: The input states to the network.
:param prediction_type: The requested PredictionType to look for in the network components
:return: A dictionary with predictions for all components matching the requested prediction type
"""
ret_dict = {}
for component in self.available_return_types[prediction_type]:
ret_dict[component] = self.predict(inputs=states, outputs=component.output)
return ret_dict
@staticmethod
def get_activation_function(activation_function_string: str):
"""
Map the activation function from a string to the tensorflow framework equivalent
:param activation_function_string: the type of the activation function
:return: the tensorflow activation function
"""
activation_functions = {
'relu': tf.nn.relu,
'tanh': tf.nn.tanh,
'sigmoid': tf.nn.sigmoid,
'elu': tf.nn.elu,
'selu': tf.nn.selu,
'leaky_relu': tf.nn.leaky_relu,
'none': None
}
assert activation_function_string in activation_functions.keys(), \
"Activation function must be one of the following {}. instead it was: {}"\
.format(activation_functions.keys(), activation_function_string)
return activation_functions[activation_function_string]
def get_input_embedder(self, input_name: str, embedder_params: InputEmbedderParameters):
"""
Given an input embedder parameters class, creates the input embedder and returns it
:param input_name: the name of the input to the embedder (used for retrieving the shape). The input should
be a value within the state or the action.
:param embedder_params: the parameters of the class of the embedder
:return: the embedder instance
"""
allowed_inputs = copy.copy(self.spaces.state.sub_spaces)
allowed_inputs["action"] = copy.copy(self.spaces.action)
allowed_inputs["goal"] = copy.copy(self.spaces.goal)
if input_name not in allowed_inputs.keys():
raise ValueError("The key for the input embedder ({}) must match one of the following keys: {}"
.format(input_name, allowed_inputs.keys()))
mod_names = {'image': 'ImageEmbedder', 'vector': 'VectorEmbedder'}
emb_type = "vector"
if isinstance(allowed_inputs[input_name], PlanarMapsObservationSpace):
emb_type = "image"
embedder_path = 'rl_coach.architectures.tensorflow_components.embedders:' + mod_names[emb_type]
embedder_params_copy = copy.copy(embedder_params)
embedder_params_copy.activation_function = self.get_activation_function(embedder_params.activation_function)
embedder_params_copy.input_rescaling = embedder_params_copy.input_rescaling[emb_type]
embedder_params_copy.input_offset = embedder_params_copy.input_offset[emb_type]
embedder_params_copy.name = input_name
module = dynamic_import_and_instantiate_module_from_params(embedder_params_copy,
path=embedder_path,
positional_args=[allowed_inputs[input_name].shape])
return module
def get_middleware(self, middleware_params: MiddlewareParameters):
"""
Given a middleware type, creates the middleware and returns it
:param middleware_params: the paramaeters of the middleware class
:return: the middleware instance
"""
mod_name = middleware_params.parameterized_class_name
middleware_path = 'rl_coach.architectures.tensorflow_components.middlewares:' + mod_name
middleware_params_copy = copy.copy(middleware_params)
middleware_params_copy.activation_function = self.get_activation_function(middleware_params.activation_function)
module = dynamic_import_and_instantiate_module_from_params(middleware_params_copy, path=middleware_path)
return module
def get_output_head(self, head_params: HeadParameters, head_idx: int):
"""
Given a head type, creates the head and returns it
:param head_params: the parameters of the head to create
:param head_idx: the head index
:return: the head
"""
mod_name = head_params.parameterized_class_name
head_path = 'rl_coach.architectures.tensorflow_components.heads:' + mod_name
head_params_copy = copy.copy(head_params)
head_params_copy.activation_function = self.get_activation_function(head_params_copy.activation_function)
return dynamic_import_and_instantiate_module_from_params(head_params_copy, path=head_path, extra_kwargs={
'agent_parameters': self.ap, 'spaces': self.spaces, 'network_name': self.network_wrapper_name,
'head_idx': head_idx, 'is_local': self.network_is_local})
def get_model(self):
# validate the configuration
if len(self.network_parameters.input_embedders_parameters) == 0:
raise ValueError("At least one input type should be defined")
if len(self.network_parameters.heads_parameters) == 0:
raise ValueError("At least one output type should be defined")
if self.network_parameters.middleware_parameters is None:
raise ValueError("Exactly one middleware type should be defined")
# ops for defining the training / testing phase
self.is_training = tf.Variable(False, trainable=False, collections=[tf.GraphKeys.LOCAL_VARIABLES])
self.is_training_placeholder = tf.placeholder("bool")
self.assign_is_training = tf.assign(self.is_training, self.is_training_placeholder)
for network_idx in range(self.num_networks):
with tf.variable_scope('network_{}'.format(network_idx)):
####################
# Input Embeddings #
####################
state_embedding = []
for input_name in sorted(self.network_parameters.input_embedders_parameters):
input_type = self.network_parameters.input_embedders_parameters[input_name]
# get the class of the input embedder
input_embedder = self.get_input_embedder(input_name, input_type)
self.input_embedders.append(input_embedder)
# input placeholders are reused between networks. on the first network, store the placeholders
# generated by the input_embedders in self.inputs. on the rest of the networks, pass
# the existing input_placeholders into the input_embedders.
if network_idx == 0:
input_placeholder, embedding = input_embedder()
self.inputs[input_name] = input_placeholder
else:
input_placeholder, embedding = input_embedder(self.inputs[input_name])
state_embedding.append(embedding)
##########
# Merger #
##########
if len(state_embedding) == 1:
state_embedding = state_embedding[0]
else:
if self.network_parameters.embedding_merger_type == EmbeddingMergerType.Concat:
state_embedding = tf.concat(state_embedding, axis=-1, name="merger")
elif self.network_parameters.embedding_merger_type == EmbeddingMergerType.Sum:
state_embedding = tf.add_n(state_embedding, name="merger")
##############
# Middleware #
##############
self.middleware = self.get_middleware(self.network_parameters.middleware_parameters)
_, self.state_embedding = self.middleware(state_embedding)
################
# Output Heads #
################
head_count = 0
for head_idx in range(self.num_heads_per_network):
if self.network_parameters.use_separate_networks_per_head:
# if we use separate networks per head, then the head type corresponds to the network idx
head_type_idx = network_idx
head_count = network_idx
else:
# if we use a single network with multiple embedders, then the head type is the current head idx
head_type_idx = head_idx
head_params = self.network_parameters.heads_parameters[head_type_idx]
for head_copy_idx in range(head_params.num_output_head_copies):
# create output head and add it to the output heads list
self.output_heads.append(
self.get_output_head(head_params,
head_idx*head_params.num_output_head_copies + head_copy_idx)
)
# rescale the gradients from the head
self.gradients_from_head_rescalers.append(
tf.get_variable('gradients_from_head_{}-{}_rescalers'.format(head_idx, head_copy_idx),
initializer=float(head_params.rescale_gradient_from_head_by_factor),
dtype=tf.float32))
self.gradients_from_head_rescalers_placeholders.append(
tf.placeholder('float',
name='gradients_from_head_{}-{}_rescalers'.format(head_type_idx, head_copy_idx)))
self.update_head_rescaler_value_ops.append(self.gradients_from_head_rescalers[head_count].assign(
self.gradients_from_head_rescalers_placeholders[head_count]))
head_input = (1-self.gradients_from_head_rescalers[head_count]) * tf.stop_gradient(self.state_embedding) + \
self.gradients_from_head_rescalers[head_count] * self.state_embedding
# build the head
if self.network_is_local:
output, target_placeholder, input_placeholders, importance_weight_ph = \
self.output_heads[-1](head_input)
self.targets.extend(target_placeholder)
self.importance_weights.extend(importance_weight_ph)
else:
output, input_placeholders = self.output_heads[-1](head_input)
self.outputs.extend(output)
# TODO: use head names as well
for placeholder_index, input_placeholder in enumerate(input_placeholders):
self.inputs['output_{}_{}'.format(head_type_idx, placeholder_index)] = input_placeholder
head_count += 1
# Losses
self.losses = tf.losses.get_losses(self.full_name)
self.losses += tf.losses.get_regularization_losses(self.full_name)
self.total_loss = tf.losses.compute_weighted_loss(self.losses, scope=self.full_name)
# tf.summary.scalar('total_loss', self.total_loss)
# Learning rate
if self.network_parameters.learning_rate_decay_rate != 0:
self.adaptive_learning_rate_scheme = \
tf.train.exponential_decay(
self.network_parameters.learning_rate,
self.global_step,
decay_steps=self.network_parameters.learning_rate_decay_steps,
decay_rate=self.network_parameters.learning_rate_decay_rate,
staircase=True)
self.current_learning_rate = self.adaptive_learning_rate_scheme
else:
self.current_learning_rate = self.network_parameters.learning_rate
# Optimizer
if self.distributed_training and self.network_is_local and self.network_parameters.shared_optimizer:
# distributed training + is a local network + optimizer shared -> take the global optimizer
self.optimizer = self.global_network.optimizer
elif (self.distributed_training and self.network_is_local and not self.network_parameters.shared_optimizer) \
or self.network_parameters.shared_optimizer or not self.distributed_training:
# distributed training + is a global network + optimizer shared
# OR
# distributed training + is a local network + optimizer not shared
# OR
# non-distributed training
# -> create an optimizer
if self.network_parameters.optimizer_type == 'Adam':
self.optimizer = tf.train.AdamOptimizer(learning_rate=self.current_learning_rate,
beta1=self.network_parameters.adam_optimizer_beta1,
beta2=self.network_parameters.adam_optimizer_beta2,
epsilon=self.network_parameters.optimizer_epsilon)
elif self.network_parameters.optimizer_type == 'RMSProp':
self.optimizer = tf.train.RMSPropOptimizer(self.current_learning_rate,
decay=self.network_parameters.rms_prop_optimizer_decay,
epsilon=self.network_parameters.optimizer_epsilon)
elif self.network_parameters.optimizer_type == 'LBFGS':
self.optimizer = tf.contrib.opt.ScipyOptimizerInterface(self.total_loss, method='L-BFGS-B',
options={'maxiter': 25})
else:
raise Exception("{} is not a valid optimizer type".format(self.network_parameters.optimizer_type))
def __str__(self):
result = []
for network in range(self.num_networks):
network_structure = []
# embedder
for embedder in self.input_embedders:
network_structure.append("Input Embedder: {}".format(embedder.name))
network_structure.append(indent_string(str(embedder)))
if len(self.input_embedders) > 1:
network_structure.append("{} ({})".format(self.network_parameters.embedding_merger_type.name,
", ".join(["{} embedding".format(e.name) for e in self.input_embedders])))
# middleware
network_structure.append("Middleware:")
network_structure.append(indent_string(str(self.middleware)))
# head
if self.network_parameters.use_separate_networks_per_head:
heads = range(network, network+1)
else:
heads = range(0, len(self.output_heads))
for head_idx in heads:
head = self.output_heads[head_idx]
head_params = self.network_parameters.heads_parameters[head_idx]
if head_params.num_output_head_copies > 1:
network_structure.append("Output Head: {} (num copies = {})".format(head.name, head_params.num_output_head_copies))
else:
network_structure.append("Output Head: {}".format(head.name))
network_structure.append(indent_string(str(head)))
# finalize network
if self.num_networks > 1:
result.append("Sub-network for head: {}".format(self.output_heads[network].name))
result.append(indent_string('\n'.join(network_structure)))
else:
result.append('\n'.join(network_structure))
result = '\n'.join(result)
return result