mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
163 lines
6.8 KiB
Python
163 lines
6.8 KiB
Python
#
|
|
# Copyright (c) 2017 Intel Corporation
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
from typing import Type
|
|
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
from tensorflow.python.ops.losses.losses_impl import Reduction
|
|
from rl_coach.architectures.tensorflow_components.layers import Dense
|
|
from rl_coach.base_parameters import AgentParameters, Parameters, NetworkComponentParameters
|
|
from rl_coach.spaces import SpacesDefinition
|
|
from rl_coach.utils import force_list
|
|
|
|
|
|
# Used to initialize weights for policy and value output layers
|
|
def normalized_columns_initializer(std=1.0):
|
|
def _initializer(shape, dtype=None, partition_info=None):
|
|
out = np.random.randn(*shape).astype(np.float32)
|
|
out *= std / np.sqrt(np.square(out).sum(axis=0, keepdims=True))
|
|
return tf.constant(out)
|
|
return _initializer
|
|
|
|
|
|
class Head(object):
|
|
"""
|
|
A head is the final part of the network. It takes the embedding from the middleware embedder and passes it through
|
|
a neural network to produce the output of the network. There can be multiple heads in a network, and each one has
|
|
an assigned loss function. The heads are algorithm dependent.
|
|
"""
|
|
def __init__(self, agent_parameters: AgentParameters, spaces: SpacesDefinition, network_name: str,
|
|
head_idx: int=0, loss_weight: float=1., is_local: bool=True, activation_function: str='relu',
|
|
dense_layer=Dense):
|
|
self.head_idx = head_idx
|
|
self.network_name = network_name
|
|
self.network_parameters = agent_parameters.network_wrappers[self.network_name]
|
|
self.name = "head"
|
|
self.output = []
|
|
self.loss = []
|
|
self.loss_type = []
|
|
self.regularizations = []
|
|
self.loss_weight = tf.Variable([float(w) for w in force_list(loss_weight)],
|
|
trainable=False, collections=[tf.GraphKeys.LOCAL_VARIABLES])
|
|
self.target = []
|
|
self.importance_weight = []
|
|
self.input = []
|
|
self.is_local = is_local
|
|
self.ap = agent_parameters
|
|
self.spaces = spaces
|
|
self.return_type = None
|
|
self.activation_function = activation_function
|
|
self.dense_layer = dense_layer
|
|
if self.dense_layer is None:
|
|
self.dense_layer = Dense
|
|
|
|
def __call__(self, input_layer):
|
|
"""
|
|
Wrapper for building the module graph including scoping and loss creation
|
|
:param input_layer: the input to the graph
|
|
:return: the output of the last layer and the target placeholder
|
|
"""
|
|
with tf.variable_scope(self.get_name(), initializer=tf.contrib.layers.xavier_initializer()):
|
|
self._build_module(input_layer)
|
|
|
|
self.output = force_list(self.output)
|
|
self.target = force_list(self.target)
|
|
self.input = force_list(self.input)
|
|
self.loss_type = force_list(self.loss_type)
|
|
self.loss = force_list(self.loss)
|
|
self.regularizations = force_list(self.regularizations)
|
|
if self.is_local:
|
|
self.set_loss()
|
|
self._post_build()
|
|
|
|
if self.is_local:
|
|
return self.output, self.target, self.input, self.importance_weight
|
|
else:
|
|
return self.output, self.input
|
|
|
|
def _build_module(self, input_layer):
|
|
"""
|
|
Builds the graph of the module
|
|
This method is called early on from __call__. It is expected to store the graph
|
|
in self.output.
|
|
:param input_layer: the input to the graph
|
|
:return: None
|
|
"""
|
|
pass
|
|
|
|
def _post_build(self):
|
|
"""
|
|
Optional function that allows adding any extra definitions after the head has been fully defined
|
|
For example, this allows doing additional calculations that are based on the loss
|
|
:return: None
|
|
"""
|
|
pass
|
|
|
|
def get_name(self):
|
|
"""
|
|
Get a formatted name for the module
|
|
:return: the formatted name
|
|
"""
|
|
return '{}_{}'.format(self.name, self.head_idx)
|
|
|
|
def set_loss(self):
|
|
"""
|
|
Creates a target placeholder and loss function for each loss_type and regularization
|
|
:param loss_type: a tensorflow loss function
|
|
:param scope: the name scope to include the tensors in
|
|
:return: None
|
|
"""
|
|
|
|
# there are heads that define the loss internally, but we need to create additional placeholders for them
|
|
for idx in range(len(self.loss)):
|
|
importance_weight = tf.placeholder('float',
|
|
[None] + [1] * (len(self.target[idx].shape) - 1),
|
|
'{}_importance_weight'.format(self.get_name()))
|
|
self.importance_weight.append(importance_weight)
|
|
|
|
# add losses and target placeholder
|
|
for idx in range(len(self.loss_type)):
|
|
# create target placeholder
|
|
target = tf.placeholder('float', self.output[idx].shape, '{}_target'.format(self.get_name()))
|
|
self.target.append(target)
|
|
|
|
# create importance sampling weights placeholder
|
|
num_target_dims = len(self.target[idx].shape)
|
|
importance_weight = tf.placeholder('float', [None] + [1] * (num_target_dims - 1),
|
|
'{}_importance_weight'.format(self.get_name()))
|
|
self.importance_weight.append(importance_weight)
|
|
|
|
# compute the weighted loss. importance_weight weights over the samples in the batch, while self.loss_weight
|
|
# weights the specific loss of this head against other losses in this head or in other heads
|
|
loss_weight = self.loss_weight[idx]*importance_weight
|
|
loss = self.loss_type[idx](self.target[-1], self.output[idx],
|
|
scope=self.get_name(), reduction=Reduction.NONE, loss_collection=None)
|
|
|
|
# the loss is first summed over each sample in the batch and then the mean over the batch is taken
|
|
loss = tf.reduce_mean(loss_weight*tf.reduce_sum(loss, axis=list(range(1, num_target_dims))))
|
|
|
|
# we add the loss to the losses collection and later we will extract it in general_network
|
|
tf.losses.add_loss(loss)
|
|
self.loss.append(loss)
|
|
|
|
# add regularizations
|
|
for regularization in self.regularizations:
|
|
self.loss.append(regularization)
|
|
|
|
@classmethod
|
|
def path(cls):
|
|
return cls.__class__.__name__
|