1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 19:20:19 +01:00
Files
coach/rl_coach/architectures/tensorflow_components/heads/head.py

163 lines
6.8 KiB
Python

#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import Type
import numpy as np
import tensorflow as tf
from tensorflow.python.ops.losses.losses_impl import Reduction
from rl_coach.architectures.tensorflow_components.layers import Dense
from rl_coach.base_parameters import AgentParameters, Parameters, NetworkComponentParameters
from rl_coach.spaces import SpacesDefinition
from rl_coach.utils import force_list
# Used to initialize weights for policy and value output layers
def normalized_columns_initializer(std=1.0):
def _initializer(shape, dtype=None, partition_info=None):
out = np.random.randn(*shape).astype(np.float32)
out *= std / np.sqrt(np.square(out).sum(axis=0, keepdims=True))
return tf.constant(out)
return _initializer
class Head(object):
"""
A head is the final part of the network. It takes the embedding from the middleware embedder and passes it through
a neural network to produce the output of the network. There can be multiple heads in a network, and each one has
an assigned loss function. The heads are algorithm dependent.
"""
def __init__(self, agent_parameters: AgentParameters, spaces: SpacesDefinition, network_name: str,
head_idx: int=0, loss_weight: float=1., is_local: bool=True, activation_function: str='relu',
dense_layer=Dense):
self.head_idx = head_idx
self.network_name = network_name
self.network_parameters = agent_parameters.network_wrappers[self.network_name]
self.name = "head"
self.output = []
self.loss = []
self.loss_type = []
self.regularizations = []
self.loss_weight = tf.Variable([float(w) for w in force_list(loss_weight)],
trainable=False, collections=[tf.GraphKeys.LOCAL_VARIABLES])
self.target = []
self.importance_weight = []
self.input = []
self.is_local = is_local
self.ap = agent_parameters
self.spaces = spaces
self.return_type = None
self.activation_function = activation_function
self.dense_layer = dense_layer
if self.dense_layer is None:
self.dense_layer = Dense
def __call__(self, input_layer):
"""
Wrapper for building the module graph including scoping and loss creation
:param input_layer: the input to the graph
:return: the output of the last layer and the target placeholder
"""
with tf.variable_scope(self.get_name(), initializer=tf.contrib.layers.xavier_initializer()):
self._build_module(input_layer)
self.output = force_list(self.output)
self.target = force_list(self.target)
self.input = force_list(self.input)
self.loss_type = force_list(self.loss_type)
self.loss = force_list(self.loss)
self.regularizations = force_list(self.regularizations)
if self.is_local:
self.set_loss()
self._post_build()
if self.is_local:
return self.output, self.target, self.input, self.importance_weight
else:
return self.output, self.input
def _build_module(self, input_layer):
"""
Builds the graph of the module
This method is called early on from __call__. It is expected to store the graph
in self.output.
:param input_layer: the input to the graph
:return: None
"""
pass
def _post_build(self):
"""
Optional function that allows adding any extra definitions after the head has been fully defined
For example, this allows doing additional calculations that are based on the loss
:return: None
"""
pass
def get_name(self):
"""
Get a formatted name for the module
:return: the formatted name
"""
return '{}_{}'.format(self.name, self.head_idx)
def set_loss(self):
"""
Creates a target placeholder and loss function for each loss_type and regularization
:param loss_type: a tensorflow loss function
:param scope: the name scope to include the tensors in
:return: None
"""
# there are heads that define the loss internally, but we need to create additional placeholders for them
for idx in range(len(self.loss)):
importance_weight = tf.placeholder('float',
[None] + [1] * (len(self.target[idx].shape) - 1),
'{}_importance_weight'.format(self.get_name()))
self.importance_weight.append(importance_weight)
# add losses and target placeholder
for idx in range(len(self.loss_type)):
# create target placeholder
target = tf.placeholder('float', self.output[idx].shape, '{}_target'.format(self.get_name()))
self.target.append(target)
# create importance sampling weights placeholder
num_target_dims = len(self.target[idx].shape)
importance_weight = tf.placeholder('float', [None] + [1] * (num_target_dims - 1),
'{}_importance_weight'.format(self.get_name()))
self.importance_weight.append(importance_weight)
# compute the weighted loss. importance_weight weights over the samples in the batch, while self.loss_weight
# weights the specific loss of this head against other losses in this head or in other heads
loss_weight = self.loss_weight[idx]*importance_weight
loss = self.loss_type[idx](self.target[-1], self.output[idx],
scope=self.get_name(), reduction=Reduction.NONE, loss_collection=None)
# the loss is first summed over each sample in the batch and then the mean over the batch is taken
loss = tf.reduce_mean(loss_weight*tf.reduce_sum(loss, axis=list(range(1, num_target_dims))))
# we add the loss to the losses collection and later we will extract it in general_network
tf.losses.add_loss(loss)
self.loss.append(loss)
# add regularizations
for regularization in self.regularizations:
self.loss.append(regularization)
@classmethod
def path(cls):
return cls.__class__.__name__