1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-18 11:40:18 +01:00
Files
coach/rl_coach/architectures/tensorflow_components/heads/sac_head.py
guyk1971 74db141d5e SAC algorithm (#282)
* SAC algorithm

* SAC - updates to agent (learn_from_batch), sac_head and sac_q_head to fix problem in gradient calculation. Now SAC agents is able to train.
gym_environment - fixing an error in access to gym.spaces

* Soft Actor Critic - code cleanup

* code cleanup

* V-head initialization fix

* SAC benchmarks

* SAC Documentation

* typo fix

* documentation fixes

* documentation and version update

* README typo
2019-05-01 18:37:49 +03:00

108 lines
5.0 KiB
Python

#
# Copyright (c) 2019 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import tensorflow as tf
from rl_coach.architectures.tensorflow_components.layers import Dense
from rl_coach.architectures.tensorflow_components.heads.head import Head
from rl_coach.base_parameters import AgentParameters
from rl_coach.core_types import ActionProbabilities
from rl_coach.spaces import SpacesDefinition
from rl_coach.utils import eps
LOG_SIG_CAP_MAX = 2
LOG_SIG_CAP_MIN = -20
class SACPolicyHead(Head):
def __init__(self, agent_parameters: AgentParameters, spaces: SpacesDefinition, network_name: str,
head_idx: int = 0, loss_weight: float = 1., is_local: bool = True, activation_function: str='relu',
squash: bool = True, dense_layer=Dense):
super().__init__(agent_parameters, spaces, network_name, head_idx, loss_weight, is_local, activation_function,
dense_layer=dense_layer)
self.name = 'sac_policy_head'
self.return_type = ActionProbabilities
self.num_actions = self.spaces.action.shape # continuous actions
self.squash = squash # squashing using tanh
def _build_module(self, input_layer):
self.given_raw_actions = tf.placeholder(tf.float32, [None, self.num_actions], name="actions")
self.input = [self.given_raw_actions]
self.output = []
# build the network
self._build_continuous_net(input_layer, self.spaces.action)
def _squash_correction(self,actions):
'''
correct squash operation (in case of bounded actions) according to appendix C in the paper.
NOTE : this correction assume the squash is done with tanh.
:param actions: unbounded actions
:return: the correction to be applied to the log_prob of the actions, assuming tanh squash
'''
if not self.squash:
return 0
return tf.reduce_sum(tf.log(1 - tf.tanh(actions) ** 2 + eps), axis=1)
def _build_continuous_net(self, input_layer, action_space):
num_actions = action_space.shape[0]
self.policy_mu_and_logsig = self.dense_layer(2*num_actions)(input_layer, name='policy_mu_logsig')
self.policy_mean = tf.identity(self.policy_mu_and_logsig[..., :num_actions], name='policy_mean')
self.policy_log_std = tf.clip_by_value(self.policy_mu_and_logsig[..., num_actions:],
LOG_SIG_CAP_MIN, LOG_SIG_CAP_MAX,name='policy_log_std')
self.output.append(self.policy_mean) # output[0]
self.output.append(self.policy_log_std) # output[1]
# define the distributions for the policy
# Tensorflow's multivariate normal distribution supports reparameterization
tfd = tf.contrib.distributions
self.policy_distribution = tfd.MultivariateNormalDiag(loc=self.policy_mean,
scale_diag=tf.exp(self.policy_log_std))
# define network outputs
# note that tensorflow supports reparametrization.
# i.e. policy_action_sample is a tensor through which gradients can flow
self.raw_actions = self.policy_distribution.sample()
if self.squash:
self.actions = tf.tanh(self.raw_actions)
# correct log_prob in case of squash (see appendix C in the paper)
squash_correction = self._squash_correction(self.raw_actions)
else:
self.actions = self.raw_actions
squash_correction = 0
# policy_action_logprob is a tensor through which gradients can flow
self.sampled_actions_logprob = self.policy_distribution.log_prob(self.raw_actions) - squash_correction
self.sampled_actions_logprob_mean = tf.reduce_mean(self.sampled_actions_logprob)
self.output.append(self.raw_actions) # output[2] : sampled raw action (before squash)
self.output.append(self.actions) # output[3] : squashed (if needed) version of sampled raw_actions
self.output.append(self.sampled_actions_logprob) # output[4]: log prob of sampled action (squash corrected)
self.output.append(self.sampled_actions_logprob_mean) # output[5]: mean of log prob of sampled actions (squash corrected)
def __str__(self):
result = [
"policy head:"
"\t\tDense (num outputs = 256)",
"\t\tDense (num outputs = 256)",
"\t\tDense (num outputs = {0})".format(2*self.num_actions),
"policy_mu = output[:num_actions], policy_std = output[num_actions:]"
]
return '\n'.join(result)