mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 11:10:20 +01:00
100 lines
4.3 KiB
Python
100 lines
4.3 KiB
Python
#
|
|
# Copyright (c) 2017 Intel Corporation
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
from typing import Union
|
|
|
|
import numpy as np
|
|
from rl_coach.agents.value_optimization_agent import ValueOptimizationAgent
|
|
from rl_coach.architectures.tensorflow_components.heads.q_head import QHeadParameters
|
|
from rl_coach.architectures.tensorflow_components.middlewares.fc_middleware import FCMiddlewareParameters
|
|
from rl_coach.base_parameters import AlgorithmParameters, NetworkParameters, AgentParameters, \
|
|
InputEmbedderParameters, MiddlewareScheme
|
|
from rl_coach.memories.non_episodic.experience_replay import ExperienceReplayParameters
|
|
from rl_coach.schedules import LinearSchedule
|
|
|
|
from rl_coach.core_types import EnvironmentSteps
|
|
from rl_coach.exploration_policies.e_greedy import EGreedyParameters
|
|
|
|
|
|
class DQNAlgorithmParameters(AlgorithmParameters):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.num_steps_between_copying_online_weights_to_target = EnvironmentSteps(10000)
|
|
self.num_consecutive_playing_steps = EnvironmentSteps(4)
|
|
self.discount = 0.99
|
|
|
|
|
|
class DQNNetworkParameters(NetworkParameters):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.input_embedders_parameters = {'observation': InputEmbedderParameters()}
|
|
self.middleware_parameters = FCMiddlewareParameters(scheme=MiddlewareScheme.Medium)
|
|
self.heads_parameters = [QHeadParameters()]
|
|
self.loss_weights = [1.0]
|
|
self.optimizer_type = 'Adam'
|
|
self.batch_size = 32
|
|
self.replace_mse_with_huber_loss = True
|
|
self.create_target_network = True
|
|
|
|
|
|
class DQNAgentParameters(AgentParameters):
|
|
def __init__(self):
|
|
super().__init__(algorithm=DQNAlgorithmParameters(),
|
|
exploration=EGreedyParameters(),
|
|
memory=ExperienceReplayParameters(),
|
|
networks={"main": DQNNetworkParameters()})
|
|
self.exploration.epsilon_schedule = LinearSchedule(1, 0.1, 1000000)
|
|
self.exploration.evaluation_epsilon = 0.05
|
|
|
|
@property
|
|
def path(self):
|
|
return 'rl_coach.agents.dqn_agent:DQNAgent'
|
|
|
|
|
|
# Deep Q Network - https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
|
|
class DQNAgent(ValueOptimizationAgent):
|
|
def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None):
|
|
super().__init__(agent_parameters, parent)
|
|
|
|
def learn_from_batch(self, batch):
|
|
network_keys = self.ap.network_wrappers['main'].input_embedders_parameters.keys()
|
|
|
|
# for the action we actually took, the error is:
|
|
# TD error = r + discount*max(q_st_plus_1) - q_st
|
|
# # for all other actions, the error is 0
|
|
q_st_plus_1, TD_targets = self.networks['main'].parallel_prediction([
|
|
(self.networks['main'].target_network, batch.next_states(network_keys)),
|
|
(self.networks['main'].online_network, batch.states(network_keys))
|
|
])
|
|
|
|
# only update the action that we have actually done in this transition
|
|
TD_errors = []
|
|
for i in range(self.ap.network_wrappers['main'].batch_size):
|
|
new_target = batch.rewards()[i] +\
|
|
(1.0 - batch.game_overs()[i]) * self.ap.algorithm.discount * np.max(q_st_plus_1[i], 0)
|
|
TD_errors.append(np.abs(new_target - TD_targets[i, batch.actions()[i]]))
|
|
TD_targets[i, batch.actions()[i]] = new_target
|
|
|
|
# update errors in prioritized replay buffer
|
|
importance_weights = self.update_transition_priorities_and_get_weights(TD_errors, batch)
|
|
|
|
result = self.networks['main'].train_and_sync_networks(batch.states(network_keys), TD_targets,
|
|
importance_weights=importance_weights)
|
|
|
|
total_loss, losses, unclipped_grads = result[:3]
|
|
|
|
return total_loss, losses, unclipped_grads
|