mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 11:10:20 +01:00
* override episode rewards with the last transition reward * EWMA normalization filter * allowing control over when the pre_network filter runs
189 lines
5.8 KiB
Python
189 lines
5.8 KiB
Python
#
|
|
# Copyright (c) 2017 Intel Corporation
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
import os
|
|
from abc import ABC, abstractmethod
|
|
import threading
|
|
import pickle
|
|
import redis
|
|
import numpy as np
|
|
|
|
from rl_coach.utils import get_latest_checkpoint
|
|
|
|
|
|
class SharedRunningStatsSubscribe(threading.Thread):
|
|
def __init__(self, shared_running_stats):
|
|
super().__init__()
|
|
self.shared_running_stats = shared_running_stats
|
|
self.redis_address = self.shared_running_stats.pubsub.params.redis_address
|
|
self.redis_port = self.shared_running_stats.pubsub.params.redis_port
|
|
self.redis_connection = redis.Redis(self.redis_address, self.redis_port)
|
|
self.pubsub = self.redis_connection.pubsub()
|
|
self.channel = self.shared_running_stats.channel
|
|
self.pubsub.subscribe(self.channel)
|
|
|
|
def run(self):
|
|
for message in self.pubsub.listen():
|
|
try:
|
|
obj = pickle.loads(message['data'])
|
|
self.shared_running_stats.push_val(obj)
|
|
except Exception:
|
|
continue
|
|
|
|
|
|
class SharedRunningStats(ABC):
|
|
def __init__(self, name="", pubsub_params=None):
|
|
self.name = name
|
|
self.pubsub = None
|
|
if pubsub_params:
|
|
self.channel = "channel-srs-{}".format(self.name)
|
|
from rl_coach.memories.backend.memory_impl import get_memory_backend
|
|
self.pubsub = get_memory_backend(pubsub_params)
|
|
subscribe_thread = SharedRunningStatsSubscribe(self)
|
|
subscribe_thread.daemon = True
|
|
subscribe_thread.start()
|
|
|
|
@abstractmethod
|
|
def set_params(self, shape=[1], clip_values=None):
|
|
pass
|
|
|
|
def push(self, x):
|
|
if self.pubsub:
|
|
self.pubsub.redis_connection.publish(self.channel, pickle.dumps(x))
|
|
return
|
|
|
|
self.push_val(x)
|
|
|
|
@abstractmethod
|
|
def push_val(self, x):
|
|
pass
|
|
|
|
@property
|
|
@abstractmethod
|
|
def n(self):
|
|
pass
|
|
|
|
@property
|
|
@abstractmethod
|
|
def mean(self):
|
|
pass
|
|
|
|
@property
|
|
@abstractmethod
|
|
def var(self):
|
|
pass
|
|
|
|
@property
|
|
@abstractmethod
|
|
def std(self):
|
|
pass
|
|
|
|
@property
|
|
@abstractmethod
|
|
def shape(self):
|
|
pass
|
|
|
|
@abstractmethod
|
|
def normalize(self, batch):
|
|
pass
|
|
|
|
@abstractmethod
|
|
def set_session(self, sess):
|
|
pass
|
|
|
|
@abstractmethod
|
|
def save_state_to_checkpoint(self, checkpoint_dir: str, checkpoint_prefix: int):
|
|
pass
|
|
|
|
@abstractmethod
|
|
def restore_state_from_checkpoint(self, checkpoint_dir: str, checkpoint_prefix: str):
|
|
pass
|
|
|
|
|
|
class NumpySharedRunningStats(SharedRunningStats):
|
|
def __init__(self, name, epsilon=1e-2, pubsub_params=None):
|
|
super().__init__(name=name, pubsub_params=pubsub_params)
|
|
self._count = epsilon
|
|
self.epsilon = epsilon
|
|
self.checkpoint_file_extension = 'srs'
|
|
|
|
def set_params(self, shape=[1], clip_values=None):
|
|
self._shape = shape
|
|
self._mean = np.zeros(shape)
|
|
self._std = np.sqrt(self.epsilon) * np.ones(shape)
|
|
self._sum = np.zeros(shape)
|
|
self._sum_squares = self.epsilon * np.ones(shape)
|
|
self.clip_values = clip_values
|
|
|
|
def push_val(self, samples: np.ndarray):
|
|
assert len(samples.shape) >= 2 # we should always have a batch dimension
|
|
assert samples.shape[1:] == self._mean.shape, 'RunningStats input shape mismatch'
|
|
self._sum += samples.sum(axis=0).ravel()
|
|
self._sum_squares += np.square(samples).sum(axis=0).ravel()
|
|
self._count += np.shape(samples)[0]
|
|
self._mean = self._sum / self._count
|
|
self._std = np.sqrt(np.maximum(
|
|
(self._sum_squares - self._count * np.square(self._mean)) / np.maximum(self._count - 1, 1),
|
|
self.epsilon))
|
|
|
|
@property
|
|
def n(self):
|
|
return self._count
|
|
|
|
@property
|
|
def mean(self):
|
|
return self._mean
|
|
|
|
@property
|
|
def var(self):
|
|
return self._std ** 2
|
|
|
|
@property
|
|
def std(self):
|
|
return self._std
|
|
|
|
@property
|
|
def shape(self):
|
|
return self._mean.shape
|
|
|
|
def normalize(self, batch):
|
|
batch = (batch - self.mean) / (self.std + 1e-15)
|
|
return np.clip(batch, *self.clip_values)
|
|
|
|
def set_session(self, sess):
|
|
# no session for the numpy implementation
|
|
pass
|
|
|
|
def save_state_to_checkpoint(self, checkpoint_dir: str, checkpoint_prefix: int):
|
|
dict_to_save = {'_mean': self._mean,
|
|
'_std': self._std,
|
|
'_count': self._count,
|
|
'_sum': self._sum,
|
|
'_sum_squares': self._sum_squares}
|
|
|
|
with open(os.path.join(checkpoint_dir, str(checkpoint_prefix) + '.' + self.checkpoint_file_extension), 'wb') as f:
|
|
pickle.dump(dict_to_save, f, pickle.HIGHEST_PROTOCOL)
|
|
|
|
def restore_state_from_checkpoint(self, checkpoint_dir: str, checkpoint_prefix: str):
|
|
latest_checkpoint_filename = get_latest_checkpoint(checkpoint_dir, checkpoint_prefix,
|
|
self.checkpoint_file_extension)
|
|
|
|
if latest_checkpoint_filename == '':
|
|
raise ValueError("Could not find NumpySharedRunningStats checkpoint file. ")
|
|
|
|
with open(os.path.join(checkpoint_dir, str(latest_checkpoint_filename)), 'rb') as f:
|
|
saved_dict = pickle.load(f)
|
|
self.__dict__.update(saved_dict)
|