mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
500 lines
22 KiB
Python
500 lines
22 KiB
Python
#
|
|
# Copyright (c) 2017 Intel Corporation
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
import copy
|
|
import os
|
|
import time
|
|
from collections import OrderedDict
|
|
from typing import List, Tuple
|
|
from distutils.dir_util import copy_tree, remove_tree
|
|
|
|
import numpy as np
|
|
from rl_coach.base_parameters import iterable_to_items, TaskParameters, DistributedTaskParameters, VisualizationParameters, \
|
|
Parameters, PresetValidationParameters
|
|
from rl_coach.core_types import TotalStepsCounter, RunPhase, PlayingStepsType, TrainingSteps, EnvironmentEpisodes, \
|
|
EnvironmentSteps, \
|
|
StepMethod
|
|
from rl_coach.environments.environment import Environment
|
|
from rl_coach.level_manager import LevelManager
|
|
from rl_coach.utils import set_cpu
|
|
|
|
from rl_coach.logger import screen, Logger
|
|
|
|
|
|
class ScheduleParameters(Parameters):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.heatup_steps = None
|
|
self.evaluation_steps = None
|
|
self.steps_between_evaluation_periods = None
|
|
self.improve_steps = None
|
|
|
|
|
|
class HumanPlayScheduleParameters(ScheduleParameters):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.heatup_steps = EnvironmentSteps(0)
|
|
self.evaluation_steps = EnvironmentEpisodes(0)
|
|
self.steps_between_evaluation_periods = EnvironmentEpisodes(100000000)
|
|
self.improve_steps = TrainingSteps(10000000000)
|
|
|
|
|
|
class GraphManager(object):
|
|
"""
|
|
A graph manager is responsible for creating and initializing a graph of agents, including all its internal
|
|
components. It is then used in order to schedule the execution of operations on the graph, such as acting and
|
|
training.
|
|
"""
|
|
def __init__(self,
|
|
name: str,
|
|
schedule_params: ScheduleParameters,
|
|
vis_params: VisualizationParameters = VisualizationParameters()):
|
|
self.sess = None
|
|
self.level_managers = []
|
|
self.top_level_manager = None
|
|
self.environments = []
|
|
self.heatup_steps = schedule_params.heatup_steps
|
|
self.evaluation_steps = schedule_params.evaluation_steps
|
|
self.steps_between_evaluation_periods = schedule_params.steps_between_evaluation_periods
|
|
self.improve_steps = schedule_params.improve_steps
|
|
self.visualization_parameters = vis_params
|
|
self.name = name
|
|
self.task_parameters = None
|
|
self._phase = self.phase = RunPhase.UNDEFINED
|
|
self.preset_validation_params = PresetValidationParameters()
|
|
|
|
# timers
|
|
self.graph_initialization_time = time.time()
|
|
self.heatup_start_time = None
|
|
self.training_start_time = None
|
|
self.last_evaluation_start_time = None
|
|
self.last_checkpoint_saving_time = time.time()
|
|
|
|
# counters
|
|
self.total_steps_counters = {
|
|
RunPhase.HEATUP: TotalStepsCounter(),
|
|
RunPhase.TRAIN: TotalStepsCounter(),
|
|
RunPhase.TEST: TotalStepsCounter()
|
|
}
|
|
self.checkpoint_id = 0
|
|
|
|
self.checkpoint_saver = None
|
|
self.graph_logger = Logger()
|
|
|
|
def create_graph(self, task_parameters: TaskParameters):
|
|
self.task_parameters = task_parameters
|
|
|
|
if isinstance(task_parameters, DistributedTaskParameters):
|
|
screen.log_title("Creating graph - name: {} task id: {} type: {}".format(self.__class__.__name__,
|
|
task_parameters.task_index,
|
|
task_parameters.job_type))
|
|
else:
|
|
screen.log_title("Creating graph - name: {}".format(self.__class__.__name__))
|
|
|
|
# "hide" the gpu if necessary
|
|
if task_parameters.use_cpu:
|
|
set_cpu()
|
|
|
|
# create a target server for the worker and a device
|
|
if isinstance(task_parameters, DistributedTaskParameters):
|
|
task_parameters.worker_target, task_parameters.device = \
|
|
self.create_worker_or_parameters_server(task_parameters=task_parameters)
|
|
|
|
# create the graph modules
|
|
self.level_managers, self.environments = self._create_graph(task_parameters)
|
|
|
|
# set self as the parent of all the level managers
|
|
self.top_level_manager = self.level_managers[0]
|
|
for level_manager in self.level_managers:
|
|
level_manager.parent_graph_manager = self
|
|
|
|
# create a session (it needs to be created after all the graph ops were created)
|
|
self.sess = None
|
|
self.create_session(task_parameters=task_parameters)
|
|
|
|
self._phase = self.phase = RunPhase.UNDEFINED
|
|
|
|
self.setup_logger()
|
|
|
|
def _create_graph(self, task_parameters: TaskParameters) -> Tuple[List[LevelManager], List[Environment]]:
|
|
"""
|
|
Create all the graph modules and the graph scheduler
|
|
:param task_parameters: the parameters of the task
|
|
:return: the initialized level managers and environments
|
|
"""
|
|
raise NotImplementedError("")
|
|
|
|
def create_worker_or_parameters_server(self, task_parameters: DistributedTaskParameters):
|
|
import tensorflow as tf
|
|
config = tf.ConfigProto()
|
|
config.allow_soft_placement = True # allow placing ops on cpu if they are not fit for gpu
|
|
config.gpu_options.allow_growth = True # allow the gpu memory allocated for the worker to grow if needed
|
|
config.gpu_options.per_process_gpu_memory_fraction = 0.2
|
|
config.intra_op_parallelism_threads = 1
|
|
config.inter_op_parallelism_threads = 1
|
|
|
|
from rl_coach.architectures.tensorflow_components.distributed_tf_utils import create_and_start_parameters_server, \
|
|
create_cluster_spec, create_worker_server_and_device
|
|
|
|
# create cluster spec
|
|
cluster_spec = create_cluster_spec(parameters_server=task_parameters.parameters_server_hosts,
|
|
workers=task_parameters.worker_hosts)
|
|
|
|
# create and start parameters server (non-returning function) or create a worker and a device setter
|
|
if task_parameters.job_type == "ps":
|
|
create_and_start_parameters_server(cluster_spec=cluster_spec,
|
|
config=config)
|
|
elif task_parameters.job_type == "worker":
|
|
return create_worker_server_and_device(cluster_spec=cluster_spec,
|
|
task_index=task_parameters.task_index,
|
|
use_cpu=task_parameters.use_cpu,
|
|
config=config)
|
|
else:
|
|
raise ValueError("The job type should be either ps or worker and not {}"
|
|
.format(task_parameters.job_type))
|
|
|
|
def create_session(self, task_parameters: DistributedTaskParameters):
|
|
import tensorflow as tf
|
|
config = tf.ConfigProto()
|
|
config.allow_soft_placement = True # allow placing ops on cpu if they are not fit for gpu
|
|
config.gpu_options.allow_growth = True # allow the gpu memory allocated for the worker to grow if needed
|
|
# config.gpu_options.per_process_gpu_memory_fraction = 0.2
|
|
config.intra_op_parallelism_threads = 1
|
|
config.inter_op_parallelism_threads = 1
|
|
|
|
if isinstance(task_parameters, DistributedTaskParameters):
|
|
# the distributed tensorflow setting
|
|
from rl_coach.architectures.tensorflow_components.distributed_tf_utils import create_monitored_session
|
|
if hasattr(self.task_parameters, 'checkpoint_restore_dir') and self.task_parameters.checkpoint_restore_dir:
|
|
checkpoint_dir = os.path.join(task_parameters.experiment_path, 'checkpoint')
|
|
if os.path.exists(checkpoint_dir):
|
|
remove_tree(checkpoint_dir)
|
|
copy_tree(task_parameters.checkpoint_restore_dir, checkpoint_dir)
|
|
else:
|
|
checkpoint_dir = task_parameters.save_checkpoint_dir
|
|
|
|
self.sess = create_monitored_session(target=task_parameters.worker_target,
|
|
task_index=task_parameters.task_index,
|
|
checkpoint_dir=checkpoint_dir,
|
|
save_checkpoint_secs=task_parameters.save_checkpoint_secs,
|
|
config=config)
|
|
# set the session for all the modules
|
|
self.set_session(self.sess)
|
|
else:
|
|
self.variables_to_restore = tf.global_variables()
|
|
self.variables_to_restore = [v for v in self.variables_to_restore if '/online' in v.name]
|
|
self.checkpoint_saver = tf.train.Saver(self.variables_to_restore)
|
|
|
|
# regular session
|
|
self.sess = tf.Session(config=config)
|
|
|
|
# set the session for all the modules
|
|
self.set_session(self.sess)
|
|
|
|
# restore from checkpoint if given
|
|
self.restore_checkpoint()
|
|
|
|
def setup_logger(self) -> None:
|
|
# dump documentation
|
|
logger_prefix = "{graph_name}".format(graph_name=self.name)
|
|
self.graph_logger.set_logger_filenames(self.task_parameters.experiment_path, logger_prefix=logger_prefix,
|
|
add_timestamp=True, task_id=self.task_parameters.task_index)
|
|
if self.visualization_parameters.dump_parameters_documentation:
|
|
self.graph_logger.dump_documentation(str(self))
|
|
[manager.setup_logger() for manager in self.level_managers]
|
|
|
|
@property
|
|
def phase(self) -> RunPhase:
|
|
"""
|
|
Get the phase of the graph
|
|
:return: the current phase
|
|
"""
|
|
return self._phase
|
|
|
|
@phase.setter
|
|
def phase(self, val: RunPhase):
|
|
"""
|
|
Change the phase of the graph and all the hierarchy levels below it
|
|
:param val: the new phase
|
|
:return: None
|
|
"""
|
|
self._phase = val
|
|
for level_manager in self.level_managers:
|
|
level_manager.phase = val
|
|
for environment in self.environments:
|
|
environment.phase = val
|
|
|
|
def set_session(self, sess) -> None:
|
|
"""
|
|
Set the deep learning framework session for all the modules in the graph
|
|
:return: None
|
|
"""
|
|
[manager.set_session(sess) for manager in self.level_managers]
|
|
|
|
def heatup(self, steps: PlayingStepsType) -> None:
|
|
"""
|
|
Perform heatup for several steps, which means taking random actions and storing the results in memory
|
|
:param steps: the number of steps as a tuple of steps time and steps count
|
|
:return: None
|
|
"""
|
|
steps_copy = copy.copy(steps)
|
|
|
|
if steps_copy.num_steps > 0:
|
|
self.phase = RunPhase.HEATUP
|
|
screen.log_title("{}: Starting heatup".format(self.name))
|
|
self.heatup_start_time = time.time()
|
|
|
|
# reset all the levels before starting to heatup
|
|
self.reset_internal_state(force_environment_reset=True)
|
|
|
|
# act on the environment
|
|
while steps_copy.num_steps > 0:
|
|
steps_done, _ = self.act(steps_copy, continue_until_game_over=True, return_on_game_over=True)
|
|
steps_copy.num_steps -= steps_done
|
|
|
|
# training phase
|
|
self.phase = RunPhase.UNDEFINED
|
|
|
|
def handle_episode_ended(self) -> None:
|
|
"""
|
|
End an episode and reset all the episodic parameters
|
|
:return: None
|
|
"""
|
|
self.total_steps_counters[self.phase][EnvironmentEpisodes] += 1
|
|
|
|
# TODO: we should disentangle ending the episode from resetting the internal state
|
|
self.reset_internal_state()
|
|
|
|
def train(self, steps: TrainingSteps) -> None:
|
|
"""
|
|
Perform several training iterations for all the levels in the hierarchy
|
|
:param steps: number of training iterations to perform
|
|
:return: None
|
|
"""
|
|
# perform several steps of training interleaved with acting
|
|
count_end = self.total_steps_counters[RunPhase.TRAIN][TrainingSteps] + steps.num_steps
|
|
while self.total_steps_counters[RunPhase.TRAIN][TrainingSteps] < count_end:
|
|
self.total_steps_counters[RunPhase.TRAIN][TrainingSteps] += 1
|
|
losses = [manager.train() for manager in self.level_managers]
|
|
# self.loss.add_sample(loss)
|
|
|
|
def reset_internal_state(self, force_environment_reset=False) -> None:
|
|
"""
|
|
Reset an episode for all the levels
|
|
:param force_environment_reset: force the environment to reset the episode even if it has some conditions that
|
|
tell it not to. for example, if ale life is lost, gym will tell the agent that
|
|
the episode is finished but won't actually reset the episode if there are more
|
|
lives available
|
|
:return: None
|
|
"""
|
|
[environment.reset_internal_state(force_environment_reset) for environment in self.environments]
|
|
[manager.reset_internal_state() for manager in self.level_managers]
|
|
|
|
def act(self, steps: PlayingStepsType, return_on_game_over: bool=False, continue_until_game_over=False,
|
|
keep_networks_in_sync=False) -> (int, bool):
|
|
"""
|
|
Do several steps of acting on the environment
|
|
:param steps: the number of steps as a tuple of steps time and steps count
|
|
:param return_on_game_over: finish acting if an episode is finished
|
|
:param continue_until_game_over: continue playing until an episode was completed
|
|
:param keep_networks_in_sync: sync the network parameters with the global network before each episode
|
|
:return: the actual number of steps done, a boolean value that represent if the episode was done when finishing
|
|
the function call
|
|
"""
|
|
# perform several steps of playing
|
|
result = None
|
|
|
|
hold_until_a_full_episode = True if continue_until_game_over else False
|
|
initial_count = self.total_steps_counters[self.phase][steps.__class__]
|
|
count_end = initial_count + steps.num_steps
|
|
|
|
# The assumption here is that the total_steps_counters are each updated when an event
|
|
# takes place (i.e. an episode ends)
|
|
# TODO - The counter of frames is not updated correctly. need to fix that.
|
|
while self.total_steps_counters[self.phase][steps.__class__] < count_end or hold_until_a_full_episode:
|
|
current_steps = self.environments[0].total_steps_counter
|
|
|
|
result = self.top_level_manager.step(None)
|
|
# result will be None if at least one level_manager decided not to play (= all of his agents did not play)
|
|
# causing the rest of the level_managers down the stack not to play either, and thus the entire graph did
|
|
# not act
|
|
if result is None:
|
|
break
|
|
|
|
# add the diff between the total steps before and after stepping, such that environment initialization steps
|
|
# (like in Atari) will not be counted
|
|
self.total_steps_counters[self.phase][EnvironmentSteps] += \
|
|
self.environments[0].total_steps_counter - current_steps
|
|
|
|
if result.game_over:
|
|
hold_until_a_full_episode = False
|
|
self.handle_episode_ended()
|
|
if keep_networks_in_sync:
|
|
self.sync_graph()
|
|
if return_on_game_over:
|
|
return self.total_steps_counters[self.phase][EnvironmentSteps] - initial_count, True
|
|
|
|
# return the game over status
|
|
if result:
|
|
return self.total_steps_counters[self.phase][EnvironmentSteps] - initial_count, result.game_over
|
|
else:
|
|
return self.total_steps_counters[self.phase][EnvironmentSteps] - initial_count, False
|
|
|
|
def train_and_act(self, steps: StepMethod) -> None:
|
|
"""
|
|
Train the agent by doing several acting steps followed by several training steps continually
|
|
:param steps: the number of steps as a tuple of steps time and steps count
|
|
:return: None
|
|
"""
|
|
# perform several steps of training interleaved with acting
|
|
if steps.num_steps > 0:
|
|
self.phase = RunPhase.TRAIN
|
|
count_end = self.total_steps_counters[self.phase][steps.__class__] + steps.num_steps
|
|
self.reset_internal_state(force_environment_reset=True)
|
|
#TODO - the below while loop should end with full episodes, so to avoid situations where we have partial
|
|
# episodes in memory
|
|
while self.total_steps_counters[self.phase][steps.__class__] < count_end:
|
|
# The actual steps being done on the environment are decided by the agents themselves.
|
|
# This is just an high-level controller.
|
|
self.act(EnvironmentSteps(1))
|
|
self.train(TrainingSteps(1))
|
|
self.save_checkpoint()
|
|
self.phase = RunPhase.UNDEFINED
|
|
|
|
def sync_graph(self) -> None:
|
|
"""
|
|
Sync the global network parameters to the graph
|
|
:return:
|
|
"""
|
|
[manager.sync() for manager in self.level_managers]
|
|
|
|
def evaluate(self, steps: PlayingStepsType, keep_networks_in_sync: bool=False) -> None:
|
|
"""
|
|
Perform evaluation for several steps
|
|
:param steps: the number of steps as a tuple of steps time and steps count
|
|
:param keep_networks_in_sync: sync the network parameters with the global network before each episode
|
|
:return: None
|
|
"""
|
|
if steps.num_steps > 0:
|
|
self.phase = RunPhase.TEST
|
|
self.last_evaluation_start_time = time.time()
|
|
|
|
# reset all the levels before starting to evaluate
|
|
self.reset_internal_state(force_environment_reset=True)
|
|
self.sync_graph()
|
|
|
|
count_end = self.total_steps_counters[self.phase][steps.__class__] + steps.num_steps
|
|
while self.total_steps_counters[self.phase][steps.__class__] < count_end:
|
|
steps_done, _ = self.act(steps, continue_until_game_over=True, return_on_game_over=True,
|
|
keep_networks_in_sync=keep_networks_in_sync)
|
|
|
|
self.phase = RunPhase.UNDEFINED
|
|
|
|
def restore_checkpoint(self):
|
|
# TODO: find better way to load checkpoints that were saved with a global network into the online network
|
|
if hasattr(self.task_parameters, 'checkpoint_restore_dir') and self.task_parameters.checkpoint_restore_dir:
|
|
import tensorflow as tf
|
|
checkpoint_dir = self.task_parameters.checkpoint_restore_dir
|
|
checkpoint = tf.train.get_checkpoint_state(checkpoint_dir)
|
|
screen.log_title("Loading checkpoint: {}".format(checkpoint.model_checkpoint_path))
|
|
variables = {}
|
|
for var_name, _ in tf.contrib.framework.list_variables(self.task_parameters.checkpoint_restore_dir):
|
|
# Load the variable
|
|
var = tf.contrib.framework.load_variable(checkpoint_dir, var_name)
|
|
|
|
# Set the new name
|
|
new_name = var_name
|
|
new_name = new_name.replace('global/', 'online/')
|
|
variables[new_name] = var
|
|
|
|
for v in self.variables_to_restore:
|
|
self.sess.run(v.assign(variables[v.name.split(':')[0]]))
|
|
|
|
def save_checkpoint(self):
|
|
# only the chief process saves checkpoints
|
|
if self.task_parameters.save_checkpoint_secs \
|
|
and time.time() - self.last_checkpoint_saving_time >= self.task_parameters.save_checkpoint_secs \
|
|
and (self.task_parameters.task_index == 0 # distributed
|
|
or self.task_parameters.task_index is None # single-worker
|
|
):
|
|
|
|
checkpoint_path = os.path.join(self.task_parameters.save_checkpoint_dir,
|
|
"{}_Step-{}.ckpt".format(
|
|
self.checkpoint_id,
|
|
self.total_steps_counters[RunPhase.TRAIN][EnvironmentSteps]))
|
|
if not isinstance(self.task_parameters, DistributedTaskParameters):
|
|
saved_checkpoint_path = self.checkpoint_saver.save(self.sess, checkpoint_path)
|
|
else:
|
|
saved_checkpoint_path = checkpoint_path
|
|
|
|
# this is required in order for agents to save additional information like a DND for example
|
|
[manager.save_checkpoint(self.checkpoint_id) for manager in self.level_managers]
|
|
|
|
screen.log_dict(
|
|
OrderedDict([
|
|
("Saving in path", saved_checkpoint_path),
|
|
]),
|
|
prefix="Checkpoint"
|
|
)
|
|
|
|
self.checkpoint_id += 1
|
|
self.last_checkpoint_saving_time = time.time()
|
|
|
|
def improve(self):
|
|
"""
|
|
The main loop of the run.
|
|
Defined in the following steps:
|
|
1. Heatup
|
|
2. Repeat:
|
|
2.1. Repeat:
|
|
2.1.1. Act
|
|
2.1.2. Train
|
|
2.1.3. Possibly save checkpoint
|
|
2.2. Evaluate
|
|
:return: None
|
|
"""
|
|
|
|
# initialize the network parameters from the global network
|
|
self.sync_graph()
|
|
|
|
# heatup
|
|
self.heatup(self.heatup_steps)
|
|
|
|
# improve
|
|
if self.task_parameters.task_index is not None:
|
|
screen.log_title("Starting to improve {} task index {}".format(self.name, self.task_parameters.task_index))
|
|
else:
|
|
screen.log_title("Starting to improve {}".format(self.name))
|
|
self.training_start_time = time.time()
|
|
count_end = self.improve_steps.num_steps
|
|
while self.total_steps_counters[RunPhase.TRAIN][self.improve_steps.__class__] < count_end:
|
|
self.train_and_act(self.steps_between_evaluation_periods)
|
|
self.evaluate(self.evaluation_steps)
|
|
|
|
def __str__(self):
|
|
result = ""
|
|
for key, val in self.__dict__.items():
|
|
params = ""
|
|
if isinstance(val, list) or isinstance(val, dict) or isinstance(val, OrderedDict):
|
|
items = iterable_to_items(val)
|
|
for k, v in items:
|
|
params += "{}: {}\n".format(k, v)
|
|
else:
|
|
params = val
|
|
result += "{}: \n{}\n".format(key, params)
|
|
|
|
return result
|