mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 11:10:20 +01:00
112 lines
5.5 KiB
Python
112 lines
5.5 KiB
Python
#
|
|
# Copyright (c) 2017 Intel Corporation
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
from agents.value_optimization_agent import *
|
|
|
|
|
|
# Neural Episodic Control - https://arxiv.org/pdf/1703.01988.pdf
|
|
class NECAgent(ValueOptimizationAgent):
|
|
def __init__(self, env, tuning_parameters, replicated_device=None, thread_id=0):
|
|
ValueOptimizationAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id,
|
|
create_target_network=False)
|
|
self.current_episode_state_embeddings = []
|
|
self.current_episode_actions = []
|
|
self.training_started = False
|
|
# if self.tp.checkpoint_restore_dir:
|
|
# self.load_dnd(self.tp.checkpoint_restore_dir)
|
|
|
|
def learn_from_batch(self, batch):
|
|
if not self.main_network.online_network.output_heads[0].DND.has_enough_entries(self.tp.agent.number_of_knn):
|
|
return 0
|
|
else:
|
|
if not self.training_started:
|
|
self.training_started = True
|
|
screen.log_title("Finished collecting initial entries in DND. Starting to train network...")
|
|
|
|
current_states, next_states, actions, rewards, game_overs, total_return = self.extract_batch(batch)
|
|
result = self.main_network.train_and_sync_networks([current_states, actions], total_return)
|
|
total_loss = result[0]
|
|
|
|
return total_loss
|
|
|
|
def choose_action(self, curr_state, phase=RunPhase.TRAIN):
|
|
# convert to batch so we can run it through the network
|
|
observation = np.expand_dims(np.array(curr_state['observation']), 0)
|
|
|
|
# get embedding
|
|
embedding = self.main_network.sess.run(self.main_network.online_network.state_embedding,
|
|
feed_dict={self.main_network.online_network.inputs[0]: observation})
|
|
self.current_episode_state_embeddings.append(embedding[0])
|
|
|
|
# get action values
|
|
if self.main_network.online_network.output_heads[0].DND.has_enough_entries(self.tp.agent.number_of_knn):
|
|
# if there are enough entries in the DND then we can query it to get the action values
|
|
actions_q_values = []
|
|
for action in range(self.action_space_size):
|
|
feed_dict = {
|
|
self.main_network.online_network.state_embedding: embedding,
|
|
self.main_network.online_network.output_heads[0].input[0]: np.array([action])
|
|
}
|
|
q_value = self.main_network.sess.run(
|
|
self.main_network.online_network.output_heads[0].output, feed_dict=feed_dict)
|
|
actions_q_values.append(q_value[0])
|
|
else:
|
|
# get only the embedding so we can insert it to the DND
|
|
actions_q_values = [0] * self.action_space_size
|
|
|
|
# choose action according to the exploration policy and the current phase (evaluating or training the agent)
|
|
if phase == RunPhase.TRAIN:
|
|
action = self.exploration_policy.get_action(actions_q_values)
|
|
self.current_episode_actions.append(action)
|
|
else:
|
|
action = np.argmax(actions_q_values)
|
|
|
|
# store the q values statistics for logging
|
|
self.q_values.add_sample(actions_q_values)
|
|
|
|
# store information for plotting interactively (actual plotting is done in agent)
|
|
if self.tp.visualization.plot_action_values_online:
|
|
for idx, action_name in enumerate(self.env.actions_description):
|
|
self.episode_running_info[action_name].append(actions_q_values[idx])
|
|
|
|
action_value = {"action_value": actions_q_values[action]}
|
|
return action, action_value
|
|
|
|
def reset_game(self, do_not_reset_env=False):
|
|
ValueOptimizationAgent.reset_game(self, do_not_reset_env)
|
|
|
|
# make sure we already have at least one episode
|
|
if self.memory.num_complete_episodes() >= 1 and not self.in_heatup:
|
|
# get the last full episode that we have collected
|
|
episode = self.memory.get(-2)
|
|
returns = []
|
|
for i in range(episode.length()):
|
|
returns.append(episode.get_transition(i).total_return)
|
|
# Just to deal with the end of heatup where there might be a case where it ends in a middle
|
|
# of an episode, and thus when getting the episode out of the ER, it will be a complete one whereas
|
|
# the other statistics collected here, are collected only during training.
|
|
returns = returns[-len(self.current_episode_actions):]
|
|
self.main_network.online_network.output_heads[0].DND.add(self.current_episode_state_embeddings,
|
|
self.current_episode_actions, returns)
|
|
|
|
self.current_episode_state_embeddings = []
|
|
self.current_episode_actions = []
|
|
|
|
def save_model(self, model_id):
|
|
self.main_network.save_model(model_id)
|
|
with open(os.path.join(self.tp.save_model_dir, str(model_id) + '.dnd'), 'wb') as f:
|
|
pickle.dump(self.main_network.online_network.output_heads[0].DND, f, pickle.HIGHEST_PROTOCOL)
|