1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 11:10:20 +01:00
Files
coach/run_test.py
Itai Caspi 125c7ee38d Release 0.9
Main changes are detailed below:

New features -
* CARLA 0.7 simulator integration
* Human control of the game play
* Recording of human game play and storing / loading the replay buffer
* Behavioral cloning agent and presets
* Golden tests for several presets
* Selecting between deep / shallow image embedders
* Rendering through pygame (with some boost in performance)

API changes -
* Improved environment wrapper API
* Added an evaluate flag to allow convenient evaluation of existing checkpoints
* Improve frameskip definition in Gym

Bug fixes -
* Fixed loading of checkpoints for agents with more than one network
* Fixed the N Step Q learning agent python3 compatibility
2017-12-19 19:27:16 +02:00

165 lines
6.5 KiB
Python

#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# -*- coding: utf-8 -*-
import presets
import numpy as np
import pandas as pd
from os import path
import os
import glob
import shutil
import sys
import time
from logger import screen
from utils import list_all_classes_in_module, threaded_cmd_line_run, killed_processes
from subprocess import Popen
import signal
import argparse
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-p', '--preset',
help="(string) Name of a preset to run (as configured in presets.py)",
default=None,
type=str)
parser.add_argument('-itf', '--ignore_tensorflow',
help="(flag) Don't test TensorFlow presets.",
action='store_true')
parser.add_argument('-in', '--ignore_neon',
help="(flag) Don't test neon presets.",
action='store_true')
args = parser.parse_args()
if args.preset is not None:
presets_lists = [args.preset]
else:
presets_lists = list_all_classes_in_module(presets)
win_size = 10
fail_count = 0
test_count = 0
read_csv_tries = 70
# create a clean experiment directory
test_name = '__test'
test_path = os.path.join('./experiments', test_name)
if path.exists(test_path):
shutil.rmtree(test_path)
for idx, preset_name in enumerate(presets_lists):
preset = eval('presets.{}()'.format(preset_name))
if preset.test:
frameworks = []
if preset.agent.tensorflow_support and not args.ignore_tensorflow:
frameworks.append('tensorflow')
if preset.agent.neon_support and not args.ignore_neon:
frameworks.append('neon')
for framework in frameworks:
test_count += 1
# run the experiment in a separate thread
screen.log_title("Running test {} - {}".format(preset_name, framework))
cmd = 'CUDA_VISIBLE_DEVICES='' python3 coach.py -p {} -f {} -e {} -n {} -cp "seed=0" &> test_log_{}_{}.txt '\
.format(preset_name, framework, test_name, preset.test_num_workers, preset_name, framework)
p = Popen(cmd, shell=True, executable="/bin/bash", preexec_fn=os.setsid)
# get the csv with the results
csv_path = None
csv_paths = []
if preset.test_num_workers > 1:
# we have an evaluator
reward_str = 'Evaluation Reward'
filename_pattern = 'evaluator*.csv'
else:
reward_str = 'Training Reward'
filename_pattern = 'worker*.csv'
initialization_error = False
test_passed = False
tries_counter = 0
while not csv_paths:
csv_paths = glob.glob(path.join(test_path, '*', filename_pattern))
if tries_counter > read_csv_tries:
break
tries_counter += 1
time.sleep(1)
if csv_paths:
csv_path = csv_paths[0]
# verify results
csv = None
time.sleep(1)
averaged_rewards = [0]
last_num_episodes = 0
while csv is None or csv['Episode #'].values[-1] < preset.test_max_step_threshold:
try:
csv = pd.read_csv(csv_path)
except:
# sometimes the csv is being written at the same time we are
# trying to read it. no problem -> try again
continue
if reward_str not in csv.keys():
continue
rewards = csv[reward_str].values
rewards = rewards[~np.isnan(rewards)]
if len(rewards) >= win_size:
averaged_rewards = np.convolve(rewards, np.ones(win_size) / win_size, mode='valid')
else:
time.sleep(1)
continue
# print progress
percentage = int((100*last_num_episodes)/preset.test_max_step_threshold)
sys.stdout.write("\rReward: ({}/{})".format(round(averaged_rewards[-1], 1), preset.test_min_return_threshold))
sys.stdout.write(' Episode: ({}/{})'.format(last_num_episodes, preset.test_max_step_threshold))
sys.stdout.write(' {}%|{}{}| '.format(percentage, '#'*int(percentage/10), ' '*(10-int(percentage/10))))
sys.stdout.flush()
if csv['Episode #'].shape[0] - last_num_episodes <= 0:
continue
last_num_episodes = csv['Episode #'].values[-1]
# check if reward is enough
if np.any(averaged_rewards > preset.test_min_return_threshold):
test_passed = True
break
time.sleep(1)
# kill test and print result
os.killpg(os.getpgid(p.pid), signal.SIGTERM)
if test_passed:
screen.success("Passed successfully")
else:
screen.error("Failed due to a mismatch with the golden", crash=False)
fail_count += 1
shutil.rmtree(test_path)
screen.separator()
if fail_count == 0:
screen.success(" Summary: " + str(test_count) + "/" + str(test_count) + " tests passed successfully")
else:
screen.error(" Summary: " + str(test_count - fail_count) + "/" + str(test_count) + " tests passed successfully")