1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 19:20:19 +01:00
Files
coach/architectures/tensorflow_components/shared_variables.py

82 lines
3.2 KiB
Python

#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import tensorflow as tf
import numpy as np
class SharedRunningStats(object):
def __init__(self, tuning_parameters, replicated_device, epsilon=1e-2, shape=(), name=""):
self.tp = tuning_parameters
with tf.device(replicated_device):
with tf.variable_scope(name):
self._sum = tf.get_variable(
dtype=tf.float64,
shape=shape,
initializer=tf.constant_initializer(0.0),
name="running_sum", trainable=False)
self._sum_squared = tf.get_variable(
dtype=tf.float64,
shape=shape,
initializer=tf.constant_initializer(epsilon),
name="running_sum_squared", trainable=False)
self._count = tf.get_variable(
dtype=tf.float64,
shape=(),
initializer=tf.constant_initializer(epsilon),
name="count", trainable=False)
self._shape = shape
self._mean = self._sum / self._count
self._std = tf.sqrt(tf.maximum((self._sum_squared - self._count*tf.square(self._mean))
/ tf.maximum(self._count-1, 1), epsilon))
self.new_sum = tf.placeholder(shape=self.shape, dtype=tf.float64, name='sum')
self.new_sum_squared = tf.placeholder(shape=self.shape, dtype=tf.float64, name='var')
self.newcount = tf.placeholder(shape=[], dtype=tf.float64, name='count')
self._inc_sum = tf.assign_add(self._sum, self.new_sum, use_locking=True)
self._inc_sum_squared = tf.assign_add(self._sum_squared, self.new_sum_squared, use_locking=True)
self._inc_count = tf.assign_add(self._count, self.newcount, use_locking=True)
def push(self, x):
x = x.astype('float64')
self.tp.sess.run([self._inc_sum, self._inc_sum_squared, self._inc_count],
feed_dict={
self.new_sum: x.sum(axis=0).ravel(),
self.new_sum_squared: np.square(x).sum(axis=0).ravel(),
self.newcount: np.array(len(x), dtype='float64')
})
@property
def n(self):
return self.tp.sess.run(self._count)
@property
def mean(self):
return self.tp.sess.run(self._mean)
@property
def var(self):
return self.std ** 2
@property
def std(self):
return self.tp.sess.run(self._std)
@property
def shape(self):
return self._shape