mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 11:10:20 +01:00
170 lines
5.6 KiB
Python
170 lines
5.6 KiB
Python
#
|
|
# Copyright (c) 2017 Intel Corporation
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
import sys
|
|
import gym
|
|
import numpy as np
|
|
try:
|
|
import roboschool
|
|
from OpenGL import GL
|
|
except ImportError:
|
|
from logger import failed_imports
|
|
failed_imports.append("RoboSchool")
|
|
|
|
try:
|
|
from gym_extensions.continuous import mujoco
|
|
except:
|
|
from logger import failed_imports
|
|
failed_imports.append("GymExtensions")
|
|
|
|
try:
|
|
import pybullet_envs
|
|
except ImportError:
|
|
from logger import failed_imports
|
|
failed_imports.append("PyBullet")
|
|
|
|
from gym import wrappers
|
|
from utils import force_list, RunPhase
|
|
from environments.environment_wrapper import EnvironmentWrapper
|
|
|
|
i = 0
|
|
|
|
|
|
class GymEnvironmentWrapper(EnvironmentWrapper):
|
|
def __init__(self, tuning_parameters):
|
|
EnvironmentWrapper.__init__(self, tuning_parameters)
|
|
|
|
# env parameters
|
|
self.env = gym.make(self.env_id)
|
|
if self.seed is not None:
|
|
self.env.seed(self.seed)
|
|
|
|
# self.env_spec = gym.spec(self.env_id)
|
|
self.discrete_controls = type(self.env.action_space) != gym.spaces.box.Box
|
|
|
|
# pybullet requires rendering before resetting the environment, but other gym environments (Pendulum) will crash
|
|
try:
|
|
if self.is_rendered:
|
|
self.render()
|
|
except:
|
|
pass
|
|
|
|
o = self.reset(True)['observation']
|
|
|
|
# render
|
|
if self.is_rendered:
|
|
self.render()
|
|
|
|
self.is_state_type_image = len(o.shape) > 1
|
|
if self.is_state_type_image:
|
|
self.width = o.shape[1]
|
|
self.height = o.shape[0]
|
|
else:
|
|
self.width = o.shape[0]
|
|
|
|
self.actions_description = {}
|
|
if self.discrete_controls:
|
|
self.action_space_size = self.env.action_space.n
|
|
self.action_space_abs_range = 0
|
|
else:
|
|
self.action_space_size = self.env.action_space.shape[0]
|
|
self.action_space_high = self.env.action_space.high
|
|
self.action_space_low = self.env.action_space.low
|
|
self.action_space_abs_range = np.maximum(np.abs(self.action_space_low), np.abs(self.action_space_high))
|
|
self.actions = {i: i for i in range(self.action_space_size)}
|
|
self.timestep_limit = self.env.spec.timestep_limit
|
|
self.current_ale_lives = 0
|
|
self.measurements_size = len(self.step(0)['info'].keys())
|
|
|
|
# env intialization
|
|
self.observation = o
|
|
self.reward = 0
|
|
self.done = False
|
|
self.last_action = self.actions[0]
|
|
|
|
def render(self):
|
|
self.env.render()
|
|
|
|
def step(self, action_idx):
|
|
|
|
if action_idx is None:
|
|
action_idx = self.last_action_idx
|
|
|
|
self.last_action_idx = action_idx
|
|
|
|
if self.discrete_controls:
|
|
action = self.actions[action_idx]
|
|
else:
|
|
action = action_idx
|
|
|
|
if hasattr(self.env.env, 'ale'):
|
|
prev_ale_lives = self.env.env.ale.lives()
|
|
|
|
# pendulum-v0 for example expects a list
|
|
if not self.discrete_controls:
|
|
# catching cases where the action for continuous control is a number instead of a list the
|
|
# size of the action space
|
|
if type(action_idx) == int and action_idx == 0:
|
|
# deal with the "reset" action 0
|
|
action = [0] * self.env.action_space.shape[0]
|
|
action = np.array(force_list(action))
|
|
# removing redundant dimensions such that the action size will match the expected action size from gym
|
|
if action.shape != self.env.action_space.shape:
|
|
action = np.squeeze(action)
|
|
action = np.clip(action, self.action_space_low, self.action_space_high)
|
|
|
|
self.observation, self.reward, self.done, self.info = self.env.step(action)
|
|
|
|
if hasattr(self.env.env, 'ale') and self.phase == RunPhase.TRAIN:
|
|
# signal termination for breakout life loss
|
|
if prev_ale_lives != self.env.env.ale.lives():
|
|
self.done = True
|
|
|
|
if any(env in self.env_id for env in ["Breakout", "Pong"]):
|
|
# crop image
|
|
self.observation = self.observation[34:195, :, :]
|
|
|
|
if self.is_rendered:
|
|
self.render()
|
|
|
|
return {'observation': self.observation,
|
|
'reward': self.reward,
|
|
'done': self.done,
|
|
'action': self.last_action_idx,
|
|
'info': self.info}
|
|
|
|
def _restart_environment_episode(self, force_environment_reset=False):
|
|
# prevent reset of environment if there are ale lives left
|
|
if "Breakout" in self.env_id and self.env.env.ale.lives() > 0 and not force_environment_reset:
|
|
return self.observation
|
|
|
|
if self.seed:
|
|
self.env.seed(self.seed)
|
|
observation = self.env.reset()
|
|
while observation is None:
|
|
observation = self.step(0)['observation']
|
|
|
|
if "Breakout" in self.env_id:
|
|
# crop image
|
|
observation = observation[34:195, :, :]
|
|
|
|
self.observation = observation
|
|
|
|
return observation
|
|
|
|
def get_rendered_image(self):
|
|
return self.env.render(mode='rgb_array')
|