mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
* SAC algorithm * SAC - updates to agent (learn_from_batch), sac_head and sac_q_head to fix problem in gradient calculation. Now SAC agents is able to train. gym_environment - fixing an error in access to gym.spaces * Soft Actor Critic - code cleanup * code cleanup * V-head initialization fix * SAC benchmarks * SAC Documentation * typo fix * documentation fixes * documentation and version update * README typo
55 lines
2.3 KiB
Python
55 lines
2.3 KiB
Python
#
|
|
# Copyright (c) 2017 Intel Corporation
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
import tensorflow as tf
|
|
|
|
from rl_coach.architectures.tensorflow_components.layers import Dense
|
|
from rl_coach.architectures.tensorflow_components.heads.head import Head, normalized_columns_initializer
|
|
from rl_coach.base_parameters import AgentParameters
|
|
from rl_coach.core_types import VStateValue
|
|
from rl_coach.spaces import SpacesDefinition
|
|
|
|
|
|
class VHead(Head):
|
|
def __init__(self, agent_parameters: AgentParameters, spaces: SpacesDefinition, network_name: str,
|
|
head_idx: int = 0, loss_weight: float = 1., is_local: bool = True, activation_function: str='relu',
|
|
dense_layer=Dense, initializer='normalized_columns'):
|
|
super().__init__(agent_parameters, spaces, network_name, head_idx, loss_weight, is_local, activation_function,
|
|
dense_layer=dense_layer)
|
|
self.name = 'v_values_head'
|
|
self.return_type = VStateValue
|
|
|
|
if agent_parameters.network_wrappers[self.network_name.split('/')[0]].replace_mse_with_huber_loss:
|
|
self.loss_type = tf.losses.huber_loss
|
|
else:
|
|
self.loss_type = tf.losses.mean_squared_error
|
|
|
|
self.initializer = initializer
|
|
|
|
def _build_module(self, input_layer):
|
|
# Standard V Network
|
|
if self.initializer == 'normalized_columns':
|
|
self.output = self.dense_layer(1)(input_layer, name='output',
|
|
kernel_initializer=normalized_columns_initializer(1.0))
|
|
elif self.initializer == 'xavier' or self.initializer is None:
|
|
self.output = self.dense_layer(1)(input_layer, name='output')
|
|
|
|
def __str__(self):
|
|
result = [
|
|
"Dense (num outputs = 1)"
|
|
]
|
|
return '\n'.join(result)
|