1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 11:10:20 +01:00
Files
coach/rl_coach/architectures/tensorflow_components/middlewares/fc_middleware.py
2019-06-23 11:28:22 +03:00

92 lines
3.3 KiB
Python

#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import Union, List
import tensorflow as tf
from rl_coach.architectures.tensorflow_components.layers import Dense
from rl_coach.architectures.tensorflow_components.middlewares.middleware import Middleware
from rl_coach.base_parameters import MiddlewareScheme
from rl_coach.core_types import Middleware_FC_Embedding
from rl_coach.utils import force_list
class FCMiddleware(Middleware):
def __init__(self, activation_function=tf.nn.relu,
scheme: MiddlewareScheme = MiddlewareScheme.Medium,
batchnorm: bool = False, dropout_rate: float = 0.0,
name="middleware_fc_embedder", dense_layer=Dense, is_training=False, num_streams: int = 1):
super().__init__(activation_function=activation_function, batchnorm=batchnorm,
dropout_rate=dropout_rate, scheme=scheme, name=name, dense_layer=dense_layer,
is_training=is_training)
self.return_type = Middleware_FC_Embedding
assert(isinstance(num_streams, int) and num_streams >= 1)
self.num_streams = num_streams
def _build_module(self):
self.output = []
for stream_idx in range(self.num_streams):
layers = [self.input]
for idx, layer_params in enumerate(self.layers_params):
layers.extend(force_list(
layer_params(layers[-1], name='{}_{}'.format(layer_params.__class__.__name__,
idx + stream_idx * len(self.layers_params)),
is_training=self.is_training)
))
self.output.append((layers[-1]))
@property
def schemes(self):
return {
MiddlewareScheme.Empty:
[],
# ppo
MiddlewareScheme.Shallow:
[
self.dense_layer(64)
],
# dqn
MiddlewareScheme.Medium:
[
self.dense_layer(512)
],
MiddlewareScheme.Deep: \
[
self.dense_layer(128),
self.dense_layer(128),
self.dense_layer(128)
]
}
def __str__(self):
stream = [str(l) for l in self.layers_params]
if self.layers_params:
if self.num_streams > 1:
stream = [''] + ['\t' + l for l in stream]
result = stream * self.num_streams
result[0::len(stream)] = ['Stream {}'.format(i) for i in range(self.num_streams)]
else:
result = stream
return '\n'.join(result)
else:
return 'No layers'