mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 11:10:20 +01:00
364 lines
14 KiB
Python
364 lines
14 KiB
Python
#
|
|
# Copyright (c) 2017 Intel Corporation
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
import argparse
|
|
import glob
|
|
import os
|
|
import shutil
|
|
import signal
|
|
import subprocess
|
|
import sys
|
|
from importlib import import_module
|
|
from os import path
|
|
sys.path.append('.')
|
|
import numpy as np
|
|
import pandas as pd
|
|
import time
|
|
|
|
# -*- coding: utf-8 -*-
|
|
from rl_coach.logger import screen
|
|
|
|
|
|
def read_csv_paths(test_path, filename_pattern, read_csv_tries=100):
|
|
csv_paths = []
|
|
tries_counter = 0
|
|
while not csv_paths:
|
|
csv_paths = glob.glob(path.join(test_path, '*', filename_pattern))
|
|
if tries_counter > read_csv_tries:
|
|
break
|
|
tries_counter += 1
|
|
time.sleep(1)
|
|
return csv_paths
|
|
|
|
|
|
def clean_df(df):
|
|
if 'Wall-Clock Time' in df.keys():
|
|
df.drop(['Wall-Clock Time'], 1, inplace=True)
|
|
return df
|
|
|
|
|
|
def print_progress(averaged_rewards, last_num_episodes, preset_validation_params, start_time, args):
|
|
percentage = int((100 * last_num_episodes) / preset_validation_params.max_episodes_to_achieve_reward)
|
|
sys.stdout.write("\rReward: ({}/{})".format(round(averaged_rewards[-1], 1),
|
|
preset_validation_params.min_reward_threshold))
|
|
sys.stdout.write(' Time (sec): ({}/{})'.format(round(time.time() - start_time, 2), args.time_limit))
|
|
sys.stdout.write(' Episode: ({}/{})'.format(last_num_episodes,
|
|
preset_validation_params.max_episodes_to_achieve_reward))
|
|
sys.stdout.write(
|
|
' {}%|{}{}| '.format(percentage, '#' * int(percentage / 10), ' ' * (10 - int(percentage / 10))))
|
|
sys.stdout.flush()
|
|
|
|
|
|
def perform_reward_based_tests(args, preset_validation_params, preset_name):
|
|
win_size = 10
|
|
|
|
test_name = '__test_reward'
|
|
test_path = os.path.join('./experiments', test_name)
|
|
if path.exists(test_path):
|
|
shutil.rmtree(test_path)
|
|
|
|
# run the experiment in a separate thread
|
|
screen.log_title("Running test {}".format(preset_name))
|
|
log_file_name = 'test_log_{preset_name}.txt'.format(preset_name=preset_name)
|
|
cmd = (
|
|
'python3 rl_coach/coach.py '
|
|
'-p {preset_name} '
|
|
'-e {test_name} '
|
|
'-n {num_workers} '
|
|
'--seed 0 '
|
|
'-c '
|
|
'{level} '
|
|
'&> {log_file_name} '
|
|
).format(
|
|
preset_name=preset_name,
|
|
test_name=test_name,
|
|
num_workers=preset_validation_params.num_workers,
|
|
log_file_name=log_file_name,
|
|
level='-lvl ' + preset_validation_params.reward_test_level if preset_validation_params.reward_test_level else ''
|
|
)
|
|
|
|
p = subprocess.Popen(cmd, shell=True, executable="/bin/bash", preexec_fn=os.setsid)
|
|
|
|
start_time = time.time()
|
|
|
|
reward_str = 'Evaluation Reward'
|
|
if preset_validation_params.num_workers > 1:
|
|
filename_pattern = 'worker_0*.csv'
|
|
else:
|
|
filename_pattern = '*.csv'
|
|
|
|
test_passed = False
|
|
|
|
# get the csv with the results
|
|
csv_paths = read_csv_paths(test_path, filename_pattern)
|
|
|
|
if csv_paths:
|
|
csv_path = csv_paths[0]
|
|
|
|
# verify results
|
|
csv = None
|
|
time.sleep(1)
|
|
averaged_rewards = [0]
|
|
|
|
last_num_episodes = 0
|
|
|
|
if not args.no_progress_bar:
|
|
print_progress(averaged_rewards, last_num_episodes, preset_validation_params, start_time, args)
|
|
|
|
while csv is None or (csv['Episode #'].values[
|
|
-1] < preset_validation_params.max_episodes_to_achieve_reward and time.time() - start_time < args.time_limit):
|
|
try:
|
|
csv = pd.read_csv(csv_path)
|
|
except:
|
|
# sometimes the csv is being written at the same time we are
|
|
# trying to read it. no problem -> try again
|
|
continue
|
|
|
|
if reward_str not in csv.keys():
|
|
continue
|
|
|
|
rewards = csv[reward_str].values
|
|
rewards = rewards[~np.isnan(rewards)]
|
|
|
|
if len(rewards) >= 1:
|
|
averaged_rewards = np.convolve(rewards, np.ones(min(len(rewards), win_size)) / win_size, mode='valid')
|
|
else:
|
|
time.sleep(1)
|
|
continue
|
|
|
|
if not args.no_progress_bar:
|
|
print_progress(averaged_rewards, last_num_episodes, preset_validation_params, start_time, args)
|
|
|
|
if csv['Episode #'].shape[0] - last_num_episodes <= 0:
|
|
continue
|
|
|
|
last_num_episodes = csv['Episode #'].values[-1]
|
|
|
|
# check if reward is enough
|
|
if np.any(averaged_rewards >= preset_validation_params.min_reward_threshold):
|
|
test_passed = True
|
|
break
|
|
time.sleep(1)
|
|
|
|
# kill test and print result
|
|
os.killpg(os.getpgid(p.pid), signal.SIGTERM)
|
|
screen.log('')
|
|
if test_passed:
|
|
screen.success("Passed successfully")
|
|
else:
|
|
if time.time() - start_time > args.time_limit:
|
|
screen.error("Failed due to exceeding time limit", crash=False)
|
|
if args.verbose:
|
|
screen.error("command exitcode: {}".format(p.returncode), crash=False)
|
|
screen.error(open(log_file_name).read(), crash=False)
|
|
elif csv_paths:
|
|
screen.error("Failed due to insufficient reward", crash=False)
|
|
if args.verbose:
|
|
screen.error("command exitcode: {}".format(p.returncode), crash=False)
|
|
screen.error(open(log_file_name).read(), crash=False)
|
|
screen.error("preset_validation_params.max_episodes_to_achieve_reward: {}".format(
|
|
preset_validation_params.max_episodes_to_achieve_reward), crash=False)
|
|
screen.error("preset_validation_params.min_reward_threshold: {}".format(
|
|
preset_validation_params.min_reward_threshold), crash=False)
|
|
screen.error("averaged_rewards: {}".format(averaged_rewards), crash=False)
|
|
screen.error("episode number: {}".format(csv['Episode #'].values[-1]), crash=False)
|
|
else:
|
|
screen.error("csv file never found", crash=False)
|
|
if args.verbose:
|
|
screen.error("command exitcode: {}".format(p.returncode), crash=False)
|
|
screen.error(open(log_file_name).read(), crash=False)
|
|
|
|
shutil.rmtree(test_path)
|
|
os.remove(log_file_name)
|
|
return test_passed
|
|
|
|
|
|
def perform_trace_based_tests(args, preset_name, num_env_steps, level=None):
|
|
test_name = '__test_trace'
|
|
test_path = os.path.join('./experiments', test_name)
|
|
if path.exists(test_path):
|
|
shutil.rmtree(test_path)
|
|
|
|
# run the experiment in a separate thread
|
|
screen.log_title("Running test {}{}".format(preset_name, ' - ' + level if level else ''))
|
|
log_file_name = 'test_log_{preset_name}.txt'.format(preset_name=preset_name)
|
|
|
|
cmd = (
|
|
'python3 rl_coach/coach.py '
|
|
'-p {preset_name} '
|
|
'-e {test_name} '
|
|
'--seed 42 '
|
|
'-c '
|
|
'--no_summary '
|
|
'-cp {custom_param} '
|
|
'{level} '
|
|
'&> {log_file_name} '
|
|
).format(
|
|
preset_name=preset_name,
|
|
test_name=test_name,
|
|
log_file_name=log_file_name,
|
|
level='-lvl ' + level if level else '',
|
|
custom_param='\"improve_steps=EnvironmentSteps({n});'
|
|
'steps_between_evaluation_periods=EnvironmentSteps({n});'
|
|
'evaluation_steps=EnvironmentSteps(1);'
|
|
'heatup_steps=EnvironmentSteps(1024)\"'.format(n=num_env_steps)
|
|
)
|
|
|
|
p = subprocess.Popen(cmd, shell=True, executable="/bin/bash", preexec_fn=os.setsid)
|
|
p.wait()
|
|
|
|
filename_pattern = '*.csv'
|
|
|
|
# get the csv with the results
|
|
csv_paths = read_csv_paths(test_path, filename_pattern)
|
|
|
|
test_passed = False
|
|
if not csv_paths:
|
|
screen.error("csv file never found", crash=False)
|
|
if args.verbose:
|
|
screen.error("command exitcode: {}".format(p.returncode), crash=False)
|
|
screen.error(open(log_file_name).read(), crash=False)
|
|
else:
|
|
trace_path = os.path.join('./rl_coach', 'traces', preset_name + '_' + level.replace(':', '_') if level else preset_name, '')
|
|
if not os.path.exists(trace_path):
|
|
screen.log('No trace found, creating new trace in: {}'.format(trace_path))
|
|
os.makedirs(os.path.dirname(trace_path))
|
|
df = pd.read_csv(csv_paths[0])
|
|
df = clean_df(df)
|
|
df.to_csv(os.path.join(trace_path, 'trace.csv'), index=False)
|
|
screen.success("Successfully created new trace.")
|
|
test_passed = True
|
|
else:
|
|
test_df = pd.read_csv(csv_paths[0])
|
|
test_df = clean_df(test_df)
|
|
new_trace_csv_path = os.path.join(trace_path, 'trace_new.csv')
|
|
test_df.to_csv(new_trace_csv_path, index=False)
|
|
test_df = pd.read_csv(new_trace_csv_path)
|
|
trace_csv_path = glob.glob(path.join(trace_path, 'trace.csv'))
|
|
trace_csv_path = trace_csv_path[0]
|
|
trace_df = pd.read_csv(trace_csv_path)
|
|
test_passed = test_df.equals(trace_df)
|
|
if test_passed:
|
|
screen.success("Passed successfully.")
|
|
os.remove(new_trace_csv_path)
|
|
test_passed = True
|
|
else:
|
|
screen.error("Trace test failed.", crash=False)
|
|
if args.overwrite:
|
|
os.remove(trace_csv_path)
|
|
os.rename(new_trace_csv_path, trace_csv_path)
|
|
screen.error("Overwriting old trace.", crash=False)
|
|
else:
|
|
screen.error("bcompare {} {}".format(trace_csv_path, new_trace_csv_path), crash=False)
|
|
|
|
shutil.rmtree(test_path)
|
|
os.remove(log_file_name)
|
|
return test_passed
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('-t', '--trace',
|
|
help="(flag) perform trace based testing",
|
|
action='store_true')
|
|
parser.add_argument('-p', '--preset',
|
|
help="(string) Name of a preset to run (as configured in presets.py)",
|
|
default=None,
|
|
type=str)
|
|
parser.add_argument('-ip', '--ignore_presets',
|
|
help="(string) Name of a preset(s) to ignore (comma separated, and as configured in presets.py)",
|
|
default=None,
|
|
type=str)
|
|
parser.add_argument('-v', '--verbose',
|
|
help="(flag) display verbose logs in the event of an error",
|
|
action='store_true')
|
|
parser.add_argument('--stop_after_first_failure',
|
|
help="(flag) stop executing tests after the first error",
|
|
action='store_true')
|
|
parser.add_argument('-tl', '--time_limit',
|
|
help="time limit for each test in minutes",
|
|
default=60, # setting time limit to be so high due to DDPG being very slow - its tests are long
|
|
type=int)
|
|
parser.add_argument('-np', '--no_progress_bar',
|
|
help="(flag) Don't print the progress bar (makes jenkins logs more readable)",
|
|
action='store_true')
|
|
parser.add_argument('-ow', '--overwrite',
|
|
help="(flag) overwrite old trace with new ones in trace testing mode",
|
|
action='store_true')
|
|
|
|
args = parser.parse_args()
|
|
if args.preset is not None:
|
|
presets_lists = [args.preset]
|
|
else:
|
|
# presets_lists = list_all_classes_in_module(presets)
|
|
presets_lists = [f[:-3] for f in os.listdir(os.path.join('rl_coach', 'presets')) if
|
|
f[-3:] == '.py' and not f == '__init__.py']
|
|
|
|
fail_count = 0
|
|
test_count = 0
|
|
|
|
args.time_limit = 60 * args.time_limit
|
|
|
|
if args.ignore_presets is not None:
|
|
presets_to_ignore = args.ignore_presets.split(',')
|
|
else:
|
|
presets_to_ignore = []
|
|
for idx, preset_name in enumerate(sorted(presets_lists)):
|
|
if args.stop_after_first_failure and fail_count > 0:
|
|
break
|
|
if preset_name not in presets_to_ignore:
|
|
try:
|
|
preset = import_module('rl_coach.presets.{}'.format(preset_name))
|
|
except:
|
|
screen.error("Failed to load preset <{}>".format(preset_name), crash=False)
|
|
fail_count += 1
|
|
test_count += 1
|
|
continue
|
|
|
|
preset_validation_params = preset.graph_manager.preset_validation_params
|
|
if not args.trace and not preset_validation_params.test:
|
|
continue
|
|
|
|
if args.trace:
|
|
num_env_steps = preset_validation_params.trace_max_env_steps
|
|
if preset_validation_params.trace_test_levels:
|
|
for level in preset_validation_params.trace_test_levels:
|
|
test_count += 1
|
|
test_passed = perform_trace_based_tests(args, preset_name, num_env_steps, level)
|
|
if not test_passed:
|
|
fail_count += 1
|
|
else:
|
|
test_count += 1
|
|
test_passed = perform_trace_based_tests(args, preset_name, num_env_steps)
|
|
if not test_passed:
|
|
fail_count += 1
|
|
else:
|
|
test_passed = perform_reward_based_tests(args, preset_validation_params, preset_name)
|
|
if not test_passed:
|
|
fail_count += 1
|
|
|
|
screen.separator()
|
|
if fail_count == 0:
|
|
screen.success(" Summary: " + str(test_count) + "/" + str(test_count) + " tests passed successfully")
|
|
else:
|
|
screen.error(" Summary: " + str(test_count - fail_count) + "/" + str(test_count) + " tests passed successfully")
|
|
|
|
|
|
if __name__ == '__main__':
|
|
os.environ['DISABLE_MUJOCO_RENDERING'] = '1'
|
|
main()
|
|
del os.environ['DISABLE_MUJOCO_RENDERING']
|