mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
337 lines
16 KiB
HTML
337 lines
16 KiB
HTML
|
||
|
||
<!DOCTYPE html>
|
||
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
|
||
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
|
||
<head>
|
||
<meta charset="utf-8">
|
||
|
||
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
||
|
||
<title>Direct Future Prediction — Reinforcement Learning Coach 0.12.0 documentation</title>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<script type="text/javascript" src="../../../_static/js/modernizr.min.js"></script>
|
||
|
||
|
||
<script type="text/javascript" id="documentation_options" data-url_root="../../../" src="../../../_static/documentation_options.js"></script>
|
||
<script type="text/javascript" src="../../../_static/jquery.js"></script>
|
||
<script type="text/javascript" src="../../../_static/underscore.js"></script>
|
||
<script type="text/javascript" src="../../../_static/doctools.js"></script>
|
||
<script type="text/javascript" src="../../../_static/language_data.js"></script>
|
||
<script async="async" type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
|
||
|
||
<script type="text/javascript" src="../../../_static/js/theme.js"></script>
|
||
|
||
|
||
|
||
|
||
<link rel="stylesheet" href="../../../_static/css/theme.css" type="text/css" />
|
||
<link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" />
|
||
<link rel="stylesheet" href="../../../_static/css/custom.css" type="text/css" />
|
||
<link rel="index" title="Index" href="../../../genindex.html" />
|
||
<link rel="search" title="Search" href="../../../search.html" />
|
||
<link rel="next" title="Double DQN" href="../value_optimization/double_dqn.html" />
|
||
<link rel="prev" title="Soft Actor-Critic" href="../policy_optimization/sac.html" />
|
||
<link href="../../../_static/css/custom.css" rel="stylesheet" type="text/css">
|
||
|
||
</head>
|
||
|
||
<body class="wy-body-for-nav">
|
||
|
||
|
||
<div class="wy-grid-for-nav">
|
||
|
||
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
|
||
<div class="wy-side-scroll">
|
||
<div class="wy-side-nav-search" >
|
||
|
||
|
||
|
||
<a href="../../../index.html" class="icon icon-home"> Reinforcement Learning Coach
|
||
|
||
|
||
|
||
|
||
<img src="../../../_static/dark_logo.png" class="logo" alt="Logo"/>
|
||
|
||
</a>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<div role="search">
|
||
<form id="rtd-search-form" class="wy-form" action="../../../search.html" method="get">
|
||
<input type="text" name="q" placeholder="Search docs" />
|
||
<input type="hidden" name="check_keywords" value="yes" />
|
||
<input type="hidden" name="area" value="default" />
|
||
</form>
|
||
</div>
|
||
|
||
|
||
</div>
|
||
|
||
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<p class="caption"><span class="caption-text">Intro</span></p>
|
||
<ul>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../usage.html">Usage</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../dist_usage.html">Usage - Distributed Coach</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../features/index.html">Features</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../selecting_an_algorithm.html">Selecting an Algorithm</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../dashboard.html">Coach Dashboard</a></li>
|
||
</ul>
|
||
<p class="caption"><span class="caption-text">Design</span></p>
|
||
<ul>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../design/control_flow.html">Control Flow</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../design/network.html">Network Design</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../design/horizontal_scaling.html">Distributed Coach - Horizontal Scale-Out</a></li>
|
||
</ul>
|
||
<p class="caption"><span class="caption-text">Contributing</span></p>
|
||
<ul>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../contributing/add_agent.html">Adding a New Agent</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../../contributing/add_env.html">Adding a New Environment</a></li>
|
||
</ul>
|
||
<p class="caption"><span class="caption-text">Components</span></p>
|
||
<ul class="current">
|
||
<li class="toctree-l1 current"><a class="reference internal" href="../index.html">Agents</a><ul class="current">
|
||
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/ac.html">Actor-Critic</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/acer.html">ACER</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../imitation/bc.html">Behavioral Cloning</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/bs_dqn.html">Bootstrapped DQN</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/categorical_dqn.html">Categorical DQN</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../imitation/cil.html">Conditional Imitation Learning</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/cppo.html">Clipped Proximal Policy Optimization</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/ddpg.html">Deep Deterministic Policy Gradient</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/sac.html">Soft Actor-Critic</a></li>
|
||
<li class="toctree-l2 current"><a class="current reference internal" href="#">Direct Future Prediction</a><ul>
|
||
<li class="toctree-l3"><a class="reference internal" href="#network-structure">Network Structure</a></li>
|
||
<li class="toctree-l3"><a class="reference internal" href="#algorithm-description">Algorithm Description</a><ul>
|
||
<li class="toctree-l4"><a class="reference internal" href="#choosing-an-action">Choosing an action</a></li>
|
||
<li class="toctree-l4"><a class="reference internal" href="#training-the-network">Training the network</a></li>
|
||
</ul>
|
||
</li>
|
||
</ul>
|
||
</li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/double_dqn.html">Double DQN</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/dqn.html">Deep Q Networks</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/dueling_dqn.html">Dueling DQN</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/mmc.html">Mixed Monte Carlo</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/n_step.html">N-Step Q Learning</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/naf.html">Normalized Advantage Functions</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/nec.html">Neural Episodic Control</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/pal.html">Persistent Advantage Learning</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/pg.html">Policy Gradient</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../policy_optimization/ppo.html">Proximal Policy Optimization</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/rainbow.html">Rainbow</a></li>
|
||
<li class="toctree-l2"><a class="reference internal" href="../value_optimization/qr_dqn.html">Quantile Regression DQN</a></li>
|
||
</ul>
|
||
</li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../architectures/index.html">Architectures</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../data_stores/index.html">Data Stores</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../environments/index.html">Environments</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../exploration_policies/index.html">Exploration Policies</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../filters/index.html">Filters</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../memories/index.html">Memories</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../memory_backends/index.html">Memory Backends</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../orchestrators/index.html">Orchestrators</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../core_types.html">Core Types</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../spaces.html">Spaces</a></li>
|
||
<li class="toctree-l1"><a class="reference internal" href="../../additional_parameters.html">Additional Parameters</a></li>
|
||
</ul>
|
||
|
||
|
||
|
||
</div>
|
||
</div>
|
||
</nav>
|
||
|
||
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
|
||
|
||
|
||
<nav class="wy-nav-top" aria-label="top navigation">
|
||
|
||
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
|
||
<a href="../../../index.html">Reinforcement Learning Coach</a>
|
||
|
||
</nav>
|
||
|
||
|
||
<div class="wy-nav-content">
|
||
|
||
<div class="rst-content">
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<div role="navigation" aria-label="breadcrumbs navigation">
|
||
|
||
<ul class="wy-breadcrumbs">
|
||
|
||
<li><a href="../../../index.html">Docs</a> »</li>
|
||
|
||
<li><a href="../index.html">Agents</a> »</li>
|
||
|
||
<li>Direct Future Prediction</li>
|
||
|
||
|
||
<li class="wy-breadcrumbs-aside">
|
||
|
||
|
||
<a href="../../../_sources/components/agents/other/dfp.rst.txt" rel="nofollow"> View page source</a>
|
||
|
||
|
||
</li>
|
||
|
||
</ul>
|
||
|
||
|
||
<hr/>
|
||
</div>
|
||
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
|
||
<div itemprop="articleBody">
|
||
|
||
<div class="section" id="direct-future-prediction">
|
||
<h1>Direct Future Prediction<a class="headerlink" href="#direct-future-prediction" title="Permalink to this headline">¶</a></h1>
|
||
<p><strong>Actions space:</strong> Discrete</p>
|
||
<p><strong>References:</strong> <a class="reference external" href="https://arxiv.org/abs/1611.01779">Learning to Act by Predicting the Future</a></p>
|
||
<div class="section" id="network-structure">
|
||
<h2>Network Structure<a class="headerlink" href="#network-structure" title="Permalink to this headline">¶</a></h2>
|
||
<a class="reference internal image-reference" href="../../../_images/dfp.png"><img alt="../../../_images/dfp.png" class="align-center" src="../../../_images/dfp.png" style="width: 600px;" /></a>
|
||
</div>
|
||
<div class="section" id="algorithm-description">
|
||
<h2>Algorithm Description<a class="headerlink" href="#algorithm-description" title="Permalink to this headline">¶</a></h2>
|
||
<div class="section" id="choosing-an-action">
|
||
<h3>Choosing an action<a class="headerlink" href="#choosing-an-action" title="Permalink to this headline">¶</a></h3>
|
||
<ol class="arabic simple">
|
||
<li><p>The current states (observations and measurements) and the corresponding goal vector are passed as an input to the network.
|
||
The output of the network is the predicted future measurements for time-steps <span class="math notranslate nohighlight">\(t+1,t+2,t+4,t+8,t+16\)</span> and
|
||
<span class="math notranslate nohighlight">\(t+32\)</span> for each possible action.</p></li>
|
||
<li><p>For each action, the measurements of each predicted time-step are multiplied by the goal vector,
|
||
and the result is a single vector of future values for each action.</p></li>
|
||
<li><p>Then, a weighted sum of the future values of each action is calculated, and the result is a single value for each action.</p></li>
|
||
<li><p>The action values are passed to the exploration policy to decide on the action to use.</p></li>
|
||
</ol>
|
||
</div>
|
||
<div class="section" id="training-the-network">
|
||
<h3>Training the network<a class="headerlink" href="#training-the-network" title="Permalink to this headline">¶</a></h3>
|
||
<p>Given a batch of transitions, run them through the network to get the current predictions of the future measurements
|
||
per action, and set them as the initial targets for training the network. For each transition
|
||
<span class="math notranslate nohighlight">\((s_t,a_t,r_t,s_{t+1} )\)</span> in the batch, the target of the network for the action that was taken, is the actual
|
||
measurements that were seen in time-steps <span class="math notranslate nohighlight">\(t+1,t+2,t+4,t+8,t+16\)</span> and <span class="math notranslate nohighlight">\(t+32\)</span>.
|
||
For the actions that were not taken, the targets are the current values.</p>
|
||
<dl class="class">
|
||
<dt id="rl_coach.agents.dfp_agent.DFPAlgorithmParameters">
|
||
<em class="property">class </em><code class="descclassname">rl_coach.agents.dfp_agent.</code><code class="descname">DFPAlgorithmParameters</code><a class="reference internal" href="../../../_modules/rl_coach/agents/dfp_agent.html#DFPAlgorithmParameters"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.agents.dfp_agent.DFPAlgorithmParameters" title="Permalink to this definition">¶</a></dt>
|
||
<dd><dl class="field-list simple">
|
||
<dt class="field-odd">Parameters</dt>
|
||
<dd class="field-odd"><ul class="simple">
|
||
<li><p><strong>num_predicted_steps_ahead</strong> – (int)
|
||
Number of future steps to predict measurements for. The future steps won’t be sequential, but rather jump
|
||
in multiples of 2. For example, if num_predicted_steps_ahead = 3, then the steps will be: t+1, t+2, t+4.
|
||
The predicted steps will be [t + 2**i for i in range(num_predicted_steps_ahead)]</p></li>
|
||
<li><p><strong>goal_vector</strong> – (List[float])
|
||
The goal vector will weight each of the measurements to form an optimization goal. The vector should have
|
||
the same length as the number of measurements, and it will be vector multiplied by the measurements.
|
||
Positive values correspond to trying to maximize the particular measurement, and negative values
|
||
correspond to trying to minimize the particular measurement.</p></li>
|
||
<li><p><strong>future_measurements_weights</strong> – (List[float])
|
||
The future_measurements_weights weight the contribution of each of the predicted timesteps to the optimization
|
||
goal. For example, if there are 6 steps predicted ahead, and a future_measurements_weights vector with 3 values,
|
||
then only the 3 last timesteps will be taken into account, according to the weights in the
|
||
future_measurements_weights vector.</p></li>
|
||
<li><p><strong>use_accumulated_reward_as_measurement</strong> – (bool)
|
||
If set to True, the accumulated reward from the beginning of the episode will be added as a measurement to
|
||
the measurements vector in the state. This van be useful in environments where the given measurements don’t
|
||
include enough information for the particular goal the agent should achieve.</p></li>
|
||
<li><p><strong>handling_targets_after_episode_end</strong> – (HandlingTargetsAfterEpisodeEnd)
|
||
Dictates how to handle measurements that are outside the episode length.</p></li>
|
||
<li><p><strong>scale_measurements_targets</strong> – (Dict[str, float])
|
||
Allows rescaling the values of each of the measurements available. This van be useful when the measurements
|
||
have a different scale and you want to normalize them to the same scale.</p></li>
|
||
</ul>
|
||
</dd>
|
||
</dl>
|
||
</dd></dl>
|
||
|
||
</div>
|
||
</div>
|
||
</div>
|
||
|
||
|
||
</div>
|
||
|
||
</div>
|
||
<footer>
|
||
|
||
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
|
||
|
||
<a href="../value_optimization/double_dqn.html" class="btn btn-neutral float-right" title="Double DQN" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right"></span></a>
|
||
|
||
|
||
<a href="../policy_optimization/sac.html" class="btn btn-neutral float-left" title="Soft Actor-Critic" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left"></span> Previous</a>
|
||
|
||
</div>
|
||
|
||
|
||
<hr/>
|
||
|
||
<div role="contentinfo">
|
||
<p>
|
||
© Copyright 2018-2019, Intel AI Lab
|
||
|
||
</p>
|
||
</div>
|
||
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
|
||
|
||
</footer>
|
||
|
||
</div>
|
||
</div>
|
||
|
||
</section>
|
||
|
||
</div>
|
||
|
||
|
||
|
||
<script type="text/javascript">
|
||
jQuery(function () {
|
||
SphinxRtdTheme.Navigation.enable(true);
|
||
});
|
||
</script>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
</body>
|
||
</html> |