1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-18 03:30:19 +01:00
Files
coach/docs/_sources/components/agents/policy_optimization/acer.rst.txt
guyk1971 74db141d5e SAC algorithm (#282)
* SAC algorithm

* SAC - updates to agent (learn_from_batch), sac_head and sac_q_head to fix problem in gradient calculation. Now SAC agents is able to train.
gym_environment - fixing an error in access to gym.spaces

* Soft Actor Critic - code cleanup

* code cleanup

* V-head initialization fix

* SAC benchmarks

* SAC Documentation

* typo fix

* documentation fixes

* documentation and version update

* README typo
2019-05-01 18:37:49 +03:00

61 lines
2.5 KiB
ReStructuredText

ACER
============
**Actions space:** Discrete
**References:** `Sample Efficient Actor-Critic with Experience Replay <https://arxiv.org/abs/1611.01224>`_
Network Structure
-----------------
.. image:: /_static/img/design_imgs/acer.png
:width: 500px
:align: center
Algorithm Description
---------------------
Choosing an action - Discrete actions
+++++++++++++++++++++++++++++++++++++
The policy network is used in order to predict action probabilites. While training, a sample is taken from a categorical
distribution assigned with these probabilities. When testing, the action with the highest probability is used.
Training the network
++++++++++++++++++++
Each iteration perform one on-policy update with a batch of the last :math:`T_{max}` transitions,
and :math:`n` (replay ratio) off-policy updates from batches of :math:`T_{max}` transitions sampled from the replay buffer.
Each update perform the following procedure:
1. **Calculate state values:**
.. math:: V(s_t) = \mathbb{E}_{a \sim \pi} [Q(s_t,a)]
2. **Calculate Q retrace:**
.. math:: Q^{ret}(s_t,a_t) = r_t +\gamma \bar{\rho}_{t+1}[Q^{ret}(s_{t+1},a_{t+1}) - Q(s_{t+1},a_{t+1})] + \gamma V(s_{t+1})
.. math:: \text{where} \quad \bar{\rho}_{t} = \min{\left\{c,\rho_t\right\}},\quad \rho_t=\frac{\pi (a_t \mid s_t)}{\mu (a_t \mid s_t)}
3. **Accumulate gradients:**
:math:`\bullet` **Policy gradients (with bias correction):**
.. math:: \hat{g}_t^{policy} & = & \bar{\rho}_{t} \nabla \log \pi (a_t \mid s_t) [Q^{ret}(s_t,a_t) - V(s_t)] \\
& & + \mathbb{E}_{a \sim \pi} \left(\left[\frac{\rho_t(a)-c}{\rho_t(a)}\right] \nabla \log \pi (a \mid s_t) [Q(s_t,a) - V(s_t)] \right)
:math:`\bullet` **Q-Head gradients (MSE):**
.. math:: \hat{g}_t^{Q} = (Q^{ret}(s_t,a_t) - Q(s_t,a_t)) \nabla Q(s_t,a_t)\\
4. **(Optional) Trust region update:** change the policy loss gradient w.r.t network output:
.. math:: \hat{g}_t^{trust-region} = \hat{g}_t^{policy} - \max \left\{0, \frac{k^T \hat{g}_t^{policy} - \delta}{\lVert k \rVert_2^2}\right\} k
.. math:: \text{where} \quad k = \nabla D_{KL}[\pi_{avg} \parallel \pi]
The average policy network is an exponential moving average of the parameters of the network (:math:`\theta_{avg}=\alpha\theta_{avg}+(1-\alpha)\theta`).
The goal of the trust region update is to the difference between the updated policy and the average policy to ensure stability.
.. autoclass:: rl_coach.agents.acer_agent.ACERAlgorithmParameters