1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 19:20:19 +01:00
Files
coach/docs/components/environments/index.html
Gal Leibovich 7eb884c5b2 TD3 (#338)
2019-06-16 11:11:21 +03:00

603 lines
37 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Environments &mdash; Reinforcement Learning Coach 0.12.0 documentation</title>
<script type="text/javascript" src="../../_static/js/modernizr.min.js"></script>
<script type="text/javascript" id="documentation_options" data-url_root="../../" src="../../_static/documentation_options.js"></script>
<script type="text/javascript" src="../../_static/jquery.js"></script>
<script type="text/javascript" src="../../_static/underscore.js"></script>
<script type="text/javascript" src="../../_static/doctools.js"></script>
<script type="text/javascript" src="../../_static/language_data.js"></script>
<script async="async" type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/javascript" src="../../_static/js/theme.js"></script>
<link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../../_static/css/custom.css" type="text/css" />
<link rel="index" title="Index" href="../../genindex.html" />
<link rel="search" title="Search" href="../../search.html" />
<link rel="next" title="Exploration Policies" href="../exploration_policies/index.html" />
<link rel="prev" title="Data Stores" href="../data_stores/index.html" />
<link href="../../_static/css/custom.css" rel="stylesheet" type="text/css">
</head>
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search" >
<a href="../../index.html" class="icon icon-home"> Reinforcement Learning Coach
<img src="../../_static/dark_logo.png" class="logo" alt="Logo"/>
</a>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<p class="caption"><span class="caption-text">Intro</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../usage.html">Usage</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../dist_usage.html">Usage - Distributed Coach</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../features/index.html">Features</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../selecting_an_algorithm.html">Selecting an Algorithm</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../dashboard.html">Coach Dashboard</a></li>
</ul>
<p class="caption"><span class="caption-text">Design</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../design/control_flow.html">Control Flow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../design/network.html">Network Design</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../design/horizontal_scaling.html">Distributed Coach - Horizontal Scale-Out</a></li>
</ul>
<p class="caption"><span class="caption-text">Contributing</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../contributing/add_agent.html">Adding a New Agent</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../contributing/add_env.html">Adding a New Environment</a></li>
</ul>
<p class="caption"><span class="caption-text">Components</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../agents/index.html">Agents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../architectures/index.html">Architectures</a></li>
<li class="toctree-l1"><a class="reference internal" href="../data_stores/index.html">Data Stores</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">Environments</a><ul>
<li class="toctree-l2"><a class="reference internal" href="#deepmind-control-suite">DeepMind Control Suite</a></li>
<li class="toctree-l2"><a class="reference internal" href="#blizzard-starcraft-ii">Blizzard Starcraft II</a></li>
<li class="toctree-l2"><a class="reference internal" href="#vizdoom">ViZDoom</a></li>
<li class="toctree-l2"><a class="reference internal" href="#carla">CARLA</a></li>
<li class="toctree-l2"><a class="reference internal" href="#openai-gym">OpenAI Gym</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../exploration_policies/index.html">Exploration Policies</a></li>
<li class="toctree-l1"><a class="reference internal" href="../filters/index.html">Filters</a></li>
<li class="toctree-l1"><a class="reference internal" href="../memories/index.html">Memories</a></li>
<li class="toctree-l1"><a class="reference internal" href="../memory_backends/index.html">Memory Backends</a></li>
<li class="toctree-l1"><a class="reference internal" href="../orchestrators/index.html">Orchestrators</a></li>
<li class="toctree-l1"><a class="reference internal" href="../core_types.html">Core Types</a></li>
<li class="toctree-l1"><a class="reference internal" href="../spaces.html">Spaces</a></li>
<li class="toctree-l1"><a class="reference internal" href="../additional_parameters.html">Additional Parameters</a></li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="../../index.html">Reinforcement Learning Coach</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="../../index.html">Docs</a> &raquo;</li>
<li>Environments</li>
<li class="wy-breadcrumbs-aside">
<a href="../../_sources/components/environments/index.rst.txt" rel="nofollow"> View page source</a>
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<div class="section" id="environments">
<h1>Environments<a class="headerlink" href="#environments" title="Permalink to this headline"></a></h1>
<dl class="class">
<dt id="rl_coach.environments.environment.Environment">
<em class="property">class </em><code class="sig-prename descclassname">rl_coach.environments.environment.</code><code class="sig-name descname">Environment</code><span class="sig-paren">(</span><em class="sig-param">level: rl_coach.environments.environment.LevelSelection, seed: int, frame_skip: int, human_control: bool, custom_reward_threshold: Union[int, float], visualization_parameters: rl_coach.base_parameters.VisualizationParameters, target_success_rate: float = 1.0, **kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="../../_modules/rl_coach/environments/environment.html#Environment"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.environments.environment.Environment" title="Permalink to this definition"></a></dt>
<dd><dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>level</strong> The environment level. Each environment can have multiple levels</p></li>
<li><p><strong>seed</strong> a seed for the random number generator of the environment</p></li>
<li><p><strong>frame_skip</strong> number of frames to skip (while repeating the same action) between each two agent directives</p></li>
<li><p><strong>human_control</strong> human should control the environment</p></li>
<li><p><strong>visualization_parameters</strong> a blob of parameters used for visualization of the environment</p></li>
<li><p><strong>**kwargs</strong> <p>as the class is instantiated by EnvironmentParameters, this is used to support having
additional arguments which will be ignored by this class, but might be used by others</p>
</p></li>
</ul>
</dd>
</dl>
<dl class="method">
<dt id="rl_coach.environments.environment.Environment.action_space">
<em class="property">property </em><code class="sig-name descname">action_space</code><a class="headerlink" href="#rl_coach.environments.environment.Environment.action_space" title="Permalink to this definition"></a></dt>
<dd><p>Get the action space of the environment</p>
<dl class="field-list simple">
<dt class="field-odd">Returns</dt>
<dd class="field-odd"><p>the action space</p>
</dd>
</dl>
</dd></dl>
<dl class="method">
<dt id="rl_coach.environments.environment.Environment.close">
<code class="sig-name descname">close</code><span class="sig-paren">(</span><span class="sig-paren">)</span> &#x2192; None<a class="reference internal" href="../../_modules/rl_coach/environments/environment.html#Environment.close"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.environments.environment.Environment.close" title="Permalink to this definition"></a></dt>
<dd><p>Clean up steps.</p>
<dl class="field-list simple">
<dt class="field-odd">Returns</dt>
<dd class="field-odd"><p>None</p>
</dd>
</dl>
</dd></dl>
<dl class="method">
<dt id="rl_coach.environments.environment.Environment.get_action_from_user">
<code class="sig-name descname">get_action_from_user</code><span class="sig-paren">(</span><span class="sig-paren">)</span> &#x2192; Union[int, float, numpy.ndarray, List]<a class="reference internal" href="../../_modules/rl_coach/environments/environment.html#Environment.get_action_from_user"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.environments.environment.Environment.get_action_from_user" title="Permalink to this definition"></a></dt>
<dd><p>Get an action from the user keyboard</p>
<dl class="field-list simple">
<dt class="field-odd">Returns</dt>
<dd class="field-odd"><p>action index</p>
</dd>
</dl>
</dd></dl>
<dl class="method">
<dt id="rl_coach.environments.environment.Environment.get_available_keys">
<code class="sig-name descname">get_available_keys</code><span class="sig-paren">(</span><span class="sig-paren">)</span> &#x2192; List[Tuple[str, Union[int, float, numpy.ndarray, List]]]<a class="reference internal" href="../../_modules/rl_coach/environments/environment.html#Environment.get_available_keys"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.environments.environment.Environment.get_available_keys" title="Permalink to this definition"></a></dt>
<dd><p>Return a list of tuples mapping between action names and the keyboard key that triggers them</p>
<dl class="field-list simple">
<dt class="field-odd">Returns</dt>
<dd class="field-odd"><p>a list of tuples mapping between action names and the keyboard key that triggers them</p>
</dd>
</dl>
</dd></dl>
<dl class="method">
<dt id="rl_coach.environments.environment.Environment.get_goal">
<code class="sig-name descname">get_goal</code><span class="sig-paren">(</span><span class="sig-paren">)</span> &#x2192; Union[None, numpy.ndarray]<a class="reference internal" href="../../_modules/rl_coach/environments/environment.html#Environment.get_goal"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.environments.environment.Environment.get_goal" title="Permalink to this definition"></a></dt>
<dd><p>Get the current goal that the agents needs to achieve in the environment</p>
<dl class="field-list simple">
<dt class="field-odd">Returns</dt>
<dd class="field-odd"><p>The goal</p>
</dd>
</dl>
</dd></dl>
<dl class="method">
<dt id="rl_coach.environments.environment.Environment.get_random_action">
<code class="sig-name descname">get_random_action</code><span class="sig-paren">(</span><span class="sig-paren">)</span> &#x2192; Union[int, float, numpy.ndarray, List]<a class="reference internal" href="../../_modules/rl_coach/environments/environment.html#Environment.get_random_action"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.environments.environment.Environment.get_random_action" title="Permalink to this definition"></a></dt>
<dd><p>Returns an action picked uniformly from the available actions</p>
<dl class="field-list simple">
<dt class="field-odd">Returns</dt>
<dd class="field-odd"><p>a numpy array with a random action</p>
</dd>
</dl>
</dd></dl>
<dl class="method">
<dt id="rl_coach.environments.environment.Environment.get_rendered_image">
<code class="sig-name descname">get_rendered_image</code><span class="sig-paren">(</span><span class="sig-paren">)</span> &#x2192; numpy.ndarray<a class="reference internal" href="../../_modules/rl_coach/environments/environment.html#Environment.get_rendered_image"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.environments.environment.Environment.get_rendered_image" title="Permalink to this definition"></a></dt>
<dd><p>Return a numpy array containing the image that will be rendered to the screen.
This can be different from the observation. For example, mujocos observation is a measurements vector.</p>
<dl class="field-list simple">
<dt class="field-odd">Returns</dt>
<dd class="field-odd"><p>numpy array containing the image that will be rendered to the screen</p>
</dd>
</dl>
</dd></dl>
<dl class="method">
<dt id="rl_coach.environments.environment.Environment.goal_space">
<em class="property">property </em><code class="sig-name descname">goal_space</code><a class="headerlink" href="#rl_coach.environments.environment.Environment.goal_space" title="Permalink to this definition"></a></dt>
<dd><p>Get the state space of the environment</p>
<dl class="field-list simple">
<dt class="field-odd">Returns</dt>
<dd class="field-odd"><p>the observation space</p>
</dd>
</dl>
</dd></dl>
<dl class="method">
<dt id="rl_coach.environments.environment.Environment.handle_episode_ended">
<code class="sig-name descname">handle_episode_ended</code><span class="sig-paren">(</span><span class="sig-paren">)</span> &#x2192; None<a class="reference internal" href="../../_modules/rl_coach/environments/environment.html#Environment.handle_episode_ended"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.environments.environment.Environment.handle_episode_ended" title="Permalink to this definition"></a></dt>
<dd><p>End an episode</p>
<dl class="field-list simple">
<dt class="field-odd">Returns</dt>
<dd class="field-odd"><p>None</p>
</dd>
</dl>
</dd></dl>
<dl class="method">
<dt id="rl_coach.environments.environment.Environment.last_env_response">
<em class="property">property </em><code class="sig-name descname">last_env_response</code><a class="headerlink" href="#rl_coach.environments.environment.Environment.last_env_response" title="Permalink to this definition"></a></dt>
<dd><p>Get the last environment response</p>
<dl class="field-list simple">
<dt class="field-odd">Returns</dt>
<dd class="field-odd"><p>a dictionary that contains the state, reward, etc.</p>
</dd>
</dl>
</dd></dl>
<dl class="method">
<dt id="rl_coach.environments.environment.Environment.phase">
<em class="property">property </em><code class="sig-name descname">phase</code><a class="headerlink" href="#rl_coach.environments.environment.Environment.phase" title="Permalink to this definition"></a></dt>
<dd><p>Get the phase of the environment
:return: the current phase</p>
</dd></dl>
<dl class="method">
<dt id="rl_coach.environments.environment.Environment.render">
<code class="sig-name descname">render</code><span class="sig-paren">(</span><span class="sig-paren">)</span> &#x2192; None<a class="reference internal" href="../../_modules/rl_coach/environments/environment.html#Environment.render"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.environments.environment.Environment.render" title="Permalink to this definition"></a></dt>
<dd><p>Call the environment function for rendering to the screen</p>
<dl class="field-list simple">
<dt class="field-odd">Returns</dt>
<dd class="field-odd"><p>None</p>
</dd>
</dl>
</dd></dl>
<dl class="method">
<dt id="rl_coach.environments.environment.Environment.reset_internal_state">
<code class="sig-name descname">reset_internal_state</code><span class="sig-paren">(</span><em class="sig-param">force_environment_reset=False</em><span class="sig-paren">)</span> &#x2192; rl_coach.core_types.EnvResponse<a class="reference internal" href="../../_modules/rl_coach/environments/environment.html#Environment.reset_internal_state"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.environments.environment.Environment.reset_internal_state" title="Permalink to this definition"></a></dt>
<dd><p>Reset the environment and all the variable of the wrapper</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>force_environment_reset</strong> forces environment reset even when the game did not end</p>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>A dictionary containing the observation, reward, done flag, action and measurements</p>
</dd>
</dl>
</dd></dl>
<dl class="method">
<dt id="rl_coach.environments.environment.Environment.set_goal">
<code class="sig-name descname">set_goal</code><span class="sig-paren">(</span><em class="sig-param">goal: Union[None, numpy.ndarray]</em><span class="sig-paren">)</span> &#x2192; None<a class="reference internal" href="../../_modules/rl_coach/environments/environment.html#Environment.set_goal"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.environments.environment.Environment.set_goal" title="Permalink to this definition"></a></dt>
<dd><p>Set the current goal that the agent needs to achieve in the environment</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>goal</strong> the goal that needs to be achieved</p>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>None</p>
</dd>
</dl>
</dd></dl>
<dl class="method">
<dt id="rl_coach.environments.environment.Environment.state_space">
<em class="property">property </em><code class="sig-name descname">state_space</code><a class="headerlink" href="#rl_coach.environments.environment.Environment.state_space" title="Permalink to this definition"></a></dt>
<dd><p>Get the state space of the environment</p>
<dl class="field-list simple">
<dt class="field-odd">Returns</dt>
<dd class="field-odd"><p>the observation space</p>
</dd>
</dl>
</dd></dl>
<dl class="method">
<dt id="rl_coach.environments.environment.Environment.step">
<code class="sig-name descname">step</code><span class="sig-paren">(</span><em class="sig-param">action: Union[int, float, numpy.ndarray, List]</em><span class="sig-paren">)</span> &#x2192; rl_coach.core_types.EnvResponse<a class="reference internal" href="../../_modules/rl_coach/environments/environment.html#Environment.step"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.environments.environment.Environment.step" title="Permalink to this definition"></a></dt>
<dd><p>Make a single step in the environment using the given action</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>action</strong> an action to use for stepping the environment. Should follow the definition of the action space.</p>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>the environment response as returned in get_last_env_response</p>
</dd>
</dl>
</dd></dl>
</dd></dl>
<div class="section" id="deepmind-control-suite">
<h2>DeepMind Control Suite<a class="headerlink" href="#deepmind-control-suite" title="Permalink to this headline"></a></h2>
<p>A set of reinforcement learning environments powered by the MuJoCo physics engine.</p>
<p>Website: <a class="reference external" href="https://github.com/deepmind/dm_control">DeepMind Control Suite</a></p>
<dl class="class">
<dt id="rl_coach.environments.control_suite_environment.ControlSuiteEnvironment">
<em class="property">class </em><code class="sig-prename descclassname">rl_coach.environments.control_suite_environment.</code><code class="sig-name descname">ControlSuiteEnvironment</code><span class="sig-paren">(</span><em class="sig-param">level: rl_coach.environments.environment.LevelSelection</em>, <em class="sig-param">frame_skip: int</em>, <em class="sig-param">visualization_parameters: rl_coach.base_parameters.VisualizationParameters</em>, <em class="sig-param">target_success_rate: float = 1.0</em>, <em class="sig-param">seed: Union[None</em>, <em class="sig-param">int] = None</em>, <em class="sig-param">human_control: bool = False</em>, <em class="sig-param">observation_type: rl_coach.environments.control_suite_environment.ObservationType = &lt;ObservationType.Measurements: 1&gt;</em>, <em class="sig-param">custom_reward_threshold: Union[int</em>, <em class="sig-param">float] = None</em>, <em class="sig-param">**kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="../../_modules/rl_coach/environments/control_suite_environment.html#ControlSuiteEnvironment"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.environments.control_suite_environment.ControlSuiteEnvironment" title="Permalink to this definition"></a></dt>
<dd><dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>level</strong> (str)
A string representing the control suite level to run. This can also be a LevelSelection object.
For example, cartpole:swingup.</p></li>
<li><p><strong>frame_skip</strong> (int)
The number of frames to skip between any two actions given by the agent. The action will be repeated
for all the skipped frames.</p></li>
<li><p><strong>visualization_parameters</strong> (VisualizationParameters)
The parameters used for visualizing the environment, such as the render flag, storing videos etc.</p></li>
<li><p><strong>target_success_rate</strong> (float)
Stop experiment if given target success rate was achieved.</p></li>
<li><p><strong>seed</strong> (int)
A seed to use for the random number generator when running the environment.</p></li>
<li><p><strong>human_control</strong> (bool)
A flag that allows controlling the environment using the keyboard keys.</p></li>
<li><p><strong>observation_type</strong> (ObservationType)
An enum which defines which observation to use. The current options are to use:
* Measurements only - a vector of joint torques and similar measurements
* Image only - an image of the environment as seen by a camera attached to the simulator
* Measurements &amp; Image - both type of observations will be returned in the state using the keys
measurements and pixels respectively.</p></li>
<li><p><strong>custom_reward_threshold</strong> (float)
Allows defining a custom reward that will be used to decide when the agent succeeded in passing the environment.</p></li>
</ul>
</dd>
</dl>
</dd></dl>
</div>
<div class="section" id="blizzard-starcraft-ii">
<h2>Blizzard Starcraft II<a class="headerlink" href="#blizzard-starcraft-ii" title="Permalink to this headline"></a></h2>
<p>A popular strategy game which was wrapped with a python interface by DeepMind.</p>
<p>Website: <a class="reference external" href="https://github.com/deepmind/pysc2">Blizzard Starcraft II</a></p>
<dl class="class">
<dt id="rl_coach.environments.starcraft2_environment.StarCraft2Environment">
<em class="property">class </em><code class="sig-prename descclassname">rl_coach.environments.starcraft2_environment.</code><code class="sig-name descname">StarCraft2Environment</code><span class="sig-paren">(</span><em class="sig-param">level: rl_coach.environments.environment.LevelSelection</em>, <em class="sig-param">frame_skip: int</em>, <em class="sig-param">visualization_parameters: rl_coach.base_parameters.VisualizationParameters</em>, <em class="sig-param">target_success_rate: float = 1.0</em>, <em class="sig-param">seed: Union[None</em>, <em class="sig-param">int] = None</em>, <em class="sig-param">human_control: bool = False</em>, <em class="sig-param">custom_reward_threshold: Union[int</em>, <em class="sig-param">float] = None</em>, <em class="sig-param">screen_size: int = 84</em>, <em class="sig-param">minimap_size: int = 64</em>, <em class="sig-param">feature_minimap_maps_to_use: List = range(0</em>, <em class="sig-param">7)</em>, <em class="sig-param">feature_screen_maps_to_use: List = range(0</em>, <em class="sig-param">17)</em>, <em class="sig-param">observation_type: rl_coach.environments.starcraft2_environment.StarcraftObservationType = &lt;StarcraftObservationType.Features: 0&gt;</em>, <em class="sig-param">disable_fog: bool = False</em>, <em class="sig-param">auto_select_all_army: bool = True</em>, <em class="sig-param">use_full_action_space: bool = False</em>, <em class="sig-param">**kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="../../_modules/rl_coach/environments/starcraft2_environment.html#StarCraft2Environment"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.environments.starcraft2_environment.StarCraft2Environment" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
</div>
<div class="section" id="vizdoom">
<h2>ViZDoom<a class="headerlink" href="#vizdoom" title="Permalink to this headline"></a></h2>
<p>A Doom-based AI research platform for reinforcement learning from raw visual information.</p>
<p>Website: <a class="reference external" href="http://vizdoom.cs.put.edu.pl/">ViZDoom</a></p>
<dl class="class">
<dt id="rl_coach.environments.doom_environment.DoomEnvironment">
<em class="property">class </em><code class="sig-prename descclassname">rl_coach.environments.doom_environment.</code><code class="sig-name descname">DoomEnvironment</code><span class="sig-paren">(</span><em class="sig-param">level: rl_coach.environments.environment.LevelSelection, seed: int, frame_skip: int, human_control: bool, custom_reward_threshold: Union[int, float], visualization_parameters: rl_coach.base_parameters.VisualizationParameters, cameras: List[rl_coach.environments.doom_environment.DoomEnvironment.CameraTypes], target_success_rate: float = 1.0, **kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="../../_modules/rl_coach/environments/doom_environment.html#DoomEnvironment"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.environments.doom_environment.DoomEnvironment" title="Permalink to this definition"></a></dt>
<dd><dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>level</strong> (str)
A string representing the doom level to run. This can also be a LevelSelection object.
This should be one of the levels defined in the DoomLevel enum. For example, HEALTH_GATHERING.</p></li>
<li><p><strong>seed</strong> (int)
A seed to use for the random number generator when running the environment.</p></li>
<li><p><strong>frame_skip</strong> (int)
The number of frames to skip between any two actions given by the agent. The action will be repeated
for all the skipped frames.</p></li>
<li><p><strong>human_control</strong> (bool)
A flag that allows controlling the environment using the keyboard keys.</p></li>
<li><p><strong>custom_reward_threshold</strong> (float)
Allows defining a custom reward that will be used to decide when the agent succeeded in passing the environment.</p></li>
<li><p><strong>visualization_parameters</strong> (VisualizationParameters)
The parameters used for visualizing the environment, such as the render flag, storing videos etc.</p></li>
<li><p><strong>cameras</strong> <p>(List[CameraTypes])
A list of camera types to use as observation in the state returned from the environment.
Each camera should be an enum from CameraTypes, and there are several options like an RGB observation,
a depth map, a segmentation map, and a top down map of the enviornment.</p>
<blockquote>
<div><dl class="field-list simple">
<dt class="field-odd">param target_success_rate</dt>
<dd class="field-odd"><p>(float)
Stop experiment if given target success rate was achieved.</p>
</dd>
</dl>
</div></blockquote>
</p></li>
</ul>
</dd>
</dl>
</dd></dl>
</div>
<div class="section" id="carla">
<h2>CARLA<a class="headerlink" href="#carla" title="Permalink to this headline"></a></h2>
<p>An open-source simulator for autonomous driving research.</p>
<p>Website: <a class="reference external" href="https://github.com/carla-simulator/carla">CARLA</a></p>
<dl class="class">
<dt id="rl_coach.environments.carla_environment.CarlaEnvironment">
<em class="property">class </em><code class="sig-prename descclassname">rl_coach.environments.carla_environment.</code><code class="sig-name descname">CarlaEnvironment</code><span class="sig-paren">(</span><em class="sig-param">level: rl_coach.environments.environment.LevelSelection, seed: int, frame_skip: int, human_control: bool, custom_reward_threshold: Union[int, float], visualization_parameters: rl_coach.base_parameters.VisualizationParameters, server_height: int, server_width: int, camera_height: int, camera_width: int, verbose: bool, experiment_suite: carla.driving_benchmark.experiment_suites.experiment_suite.ExperimentSuite, config: str, episode_max_time: int, allow_braking: bool, quality: rl_coach.environments.carla_environment.CarlaEnvironmentParameters.Quality, cameras: List[rl_coach.environments.carla_environment.CameraTypes], weather_id: List[int], experiment_path: str, separate_actions_for_throttle_and_brake: bool, num_speedup_steps: int, max_speed: float, target_success_rate: float = 1.0, **kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="../../_modules/rl_coach/environments/carla_environment.html#CarlaEnvironment"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.environments.carla_environment.CarlaEnvironment" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
</div>
<div class="section" id="openai-gym">
<h2>OpenAI Gym<a class="headerlink" href="#openai-gym" title="Permalink to this headline"></a></h2>
<p>A library which consists of a set of environments, from games to robotics.
Additionally, it can be extended using the API defined by the authors.</p>
<p>Website: <a class="reference external" href="https://gym.openai.com/">OpenAI Gym</a></p>
<p>In Coach, we support all the native environments in Gym, along with several extensions such as:</p>
<ul class="simple">
<li><p><a class="reference external" href="https://github.com/openai/roboschool">Roboschool</a> - a set of environments powered by the PyBullet engine,
that offer a free alternative to MuJoCo.</p></li>
<li><p><a class="reference external" href="https://github.com/Breakend/gym-extensions">Gym Extensions</a> - a set of environments that extends Gym for
auxiliary tasks (multitask learning, transfer learning, inverse reinforcement learning, etc.)</p></li>
<li><p><a class="reference external" href="https://github.com/bulletphysics/bullet3/tree/master/examples/pybullet">PyBullet</a> - a physics engine that
includes a set of robotics environments.</p></li>
</ul>
<dl class="class">
<dt id="rl_coach.environments.gym_environment.GymEnvironment">
<em class="property">class </em><code class="sig-prename descclassname">rl_coach.environments.gym_environment.</code><code class="sig-name descname">GymEnvironment</code><span class="sig-paren">(</span><em class="sig-param">level: rl_coach.environments.environment.LevelSelection</em>, <em class="sig-param">frame_skip: int</em>, <em class="sig-param">visualization_parameters: rl_coach.base_parameters.VisualizationParameters</em>, <em class="sig-param">target_success_rate: float = 1.0</em>, <em class="sig-param">additional_simulator_parameters: Dict[str</em>, <em class="sig-param">Any] = {}</em>, <em class="sig-param">seed: Union[None</em>, <em class="sig-param">int] = None</em>, <em class="sig-param">human_control: bool = False</em>, <em class="sig-param">custom_reward_threshold: Union[int</em>, <em class="sig-param">float] = None</em>, <em class="sig-param">random_initialization_steps: int = 1</em>, <em class="sig-param">max_over_num_frames: int = 1</em>, <em class="sig-param">observation_space_type: rl_coach.environments.gym_environment.ObservationSpaceType = None</em>, <em class="sig-param">**kwargs</em><span class="sig-paren">)</span><a class="reference internal" href="../../_modules/rl_coach/environments/gym_environment.html#GymEnvironment"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#rl_coach.environments.gym_environment.GymEnvironment" title="Permalink to this definition"></a></dt>
<dd><dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>level</strong> (str)
A string representing the gym level to run. This can also be a LevelSelection object.
For example, BreakoutDeterministic-v0</p></li>
<li><p><strong>frame_skip</strong> (int)
The number of frames to skip between any two actions given by the agent. The action will be repeated
for all the skipped frames.</p></li>
<li><p><strong>visualization_parameters</strong> (VisualizationParameters)
The parameters used for visualizing the environment, such as the render flag, storing videos etc.</p></li>
<li><p><strong>additional_simulator_parameters</strong> (Dict[str, Any])
Any additional parameters that the user can pass to the Gym environment. These parameters should be
accepted by the __init__ function of the implemented Gym environment.</p></li>
<li><p><strong>seed</strong> (int)
A seed to use for the random number generator when running the environment.</p></li>
<li><p><strong>human_control</strong> (bool)
A flag that allows controlling the environment using the keyboard keys.</p></li>
<li><p><strong>custom_reward_threshold</strong> (float)
Allows defining a custom reward that will be used to decide when the agent succeeded in passing the environment.
If not set, this value will be taken from the Gym environment definition.</p></li>
<li><p><strong>random_initialization_steps</strong> (int)
The number of random steps that will be taken in the environment after each reset.
This is a feature presented in the DQN paper, which improves the variability of the episodes the agent sees.</p></li>
<li><p><strong>max_over_num_frames</strong> (int)
This value will be used for merging multiple frames into a single frame by taking the maximum value for each
of the pixels in the frame. This is particularly used in Atari games, where the frames flicker, and objects
can be seen in one frame but disappear in the next.</p></li>
<li><p><strong>observation_space_type</strong> This value will be used for generating observation space. Allows a custom space. Should be one of
ObservationSpaceType. If not specified, observation space is inferred from the number of dimensions
of the observation: 1D: Vector space, 3D: Image space if 1 or 3 channels, PlanarMaps space otherwise.</p></li>
</ul>
</dd>
</dl>
</dd></dl>
</div>
</div>
</div>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="../exploration_policies/index.html" class="btn btn-neutral float-right" title="Exploration Policies" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right"></span></a>
<a href="../data_stores/index.html" class="btn btn-neutral float-left" title="Data Stores" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left"></span> Previous</a>
</div>
<hr/>
<div role="contentinfo">
<p>
&copy; Copyright 2018-2019, Intel AI Lab
</p>
</div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
</body>
</html>