mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
* Currently this is specific to the case of discretizing a continuous action space. Can easily be adapted to other case by feeding the kNN otherwise, and removing the usage of a discretizing output action filter
132 lines
6.1 KiB
Python
132 lines
6.1 KiB
Python
#
|
|
# Copyright (c) 2019 Intel Corporation
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
import copy
|
|
from typing import Union
|
|
from collections import OrderedDict
|
|
import numpy as np
|
|
|
|
from rl_coach.agents.ddpg_agent import DDPGAlgorithmParameters, DDPGActorNetworkParameters, \
|
|
DDPGCriticNetworkParameters, DDPGAgent
|
|
from rl_coach.base_parameters import AgentParameters
|
|
from rl_coach.core_types import ActionInfo
|
|
from rl_coach.exploration_policies.additive_noise import AdditiveNoiseParameters
|
|
from rl_coach.memories.episodic.episodic_experience_replay import EpisodicExperienceReplayParameters
|
|
from rl_coach.memories.non_episodic.differentiable_neural_dictionary import AnnoyDictionary
|
|
from rl_coach.spaces import DiscreteActionSpace, BoxActionSpace
|
|
from rl_coach.architectures.head_parameters import WolpertingerActorHeadParameters
|
|
|
|
|
|
class WolpertingerCriticNetworkParameters(DDPGCriticNetworkParameters):
|
|
def __init__(self, use_batchnorm=False):
|
|
super().__init__(use_batchnorm=use_batchnorm)
|
|
|
|
|
|
class WolpertingerActorNetworkParameters(DDPGActorNetworkParameters):
|
|
def __init__(self, use_batchnorm=False):
|
|
super().__init__()
|
|
self.heads_parameters = [WolpertingerActorHeadParameters(batchnorm=use_batchnorm)]
|
|
|
|
|
|
class WolpertingerAlgorithmParameters(DDPGAlgorithmParameters):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.action_embedding_width = 1
|
|
self.k = 1
|
|
|
|
|
|
class WolpertingerAgentParameters(AgentParameters):
|
|
def __init__(self, use_batchnorm=False):
|
|
exploration_params = AdditiveNoiseParameters()
|
|
exploration_params.noise_as_percentage_from_action_space = False
|
|
|
|
super().__init__(algorithm=WolpertingerAlgorithmParameters(),
|
|
exploration=exploration_params,
|
|
memory=EpisodicExperienceReplayParameters(),
|
|
networks=OrderedDict(
|
|
[("actor", WolpertingerActorNetworkParameters(use_batchnorm=use_batchnorm)),
|
|
("critic", WolpertingerCriticNetworkParameters(use_batchnorm=use_batchnorm))]))
|
|
|
|
@property
|
|
def path(self):
|
|
return 'rl_coach.agents.wolpertinger_agent:WolpertingerAgent'
|
|
|
|
|
|
# Deep Reinforcement Learning in Large Discrete Action Spaces - https://arxiv.org/pdf/1512.07679.pdf
|
|
class WolpertingerAgent(DDPGAgent):
|
|
def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent'] = None):
|
|
super().__init__(agent_parameters, parent)
|
|
|
|
def learn_from_batch(self, batch):
|
|
# replay buffer holds the actions in the discrete manner, as the agent is expected to act with discrete actions
|
|
# with the BoxDiscretization output filter. But DDPG needs to work on continuous actions, thus converting to
|
|
# continuous actions. This is actually a duplicate since this filtering is also done before applying actions on
|
|
# the environment. So might want to somehow reuse that conversion. Maybe can hold this information in the info
|
|
# dictionary of the transition.
|
|
|
|
output_action_filter = \
|
|
list(self.output_filter.action_filters.values())[0]
|
|
continuous_actions = []
|
|
for action in batch.actions():
|
|
continuous_actions.append(output_action_filter.filter(action))
|
|
batch._actions = np.array(continuous_actions).squeeze()
|
|
|
|
return super().learn_from_batch(batch)
|
|
|
|
def train(self):
|
|
return super().train()
|
|
|
|
def choose_action(self, curr_state):
|
|
if not isinstance(self.spaces.action, DiscreteActionSpace):
|
|
raise ValueError("WolpertingerAgent works only for discrete control problems")
|
|
|
|
# convert to batch so we can run it through the network
|
|
tf_input_state = self.prepare_batch_for_inference(curr_state, 'actor')
|
|
actor_network = self.networks['actor'].online_network
|
|
critic_network = self.networks['critic'].online_network
|
|
proto_action = actor_network.predict(tf_input_state)
|
|
proto_action = np.expand_dims(self.exploration_policy.get_action(proto_action), 0)
|
|
|
|
nn_action_embeddings, indices, _, _ = self.knn_tree.query(keys=proto_action, k=self.ap.algorithm.k)
|
|
|
|
# now move the actions through the critic and choose the one with the highest q value
|
|
critic_inputs = copy.copy(tf_input_state)
|
|
critic_inputs['observation'] = np.tile(critic_inputs['observation'], (self.ap.algorithm.k, 1))
|
|
critic_inputs['action'] = nn_action_embeddings[0]
|
|
q_values = critic_network.predict(critic_inputs)[0]
|
|
action = int(indices[0][np.argmax(q_values)])
|
|
self.action_signal.add_sample(action)
|
|
return ActionInfo(action=action, action_value=0)
|
|
|
|
def init_environment_dependent_modules(self):
|
|
super().init_environment_dependent_modules()
|
|
self.knn_tree = self.get_initialized_knn()
|
|
|
|
# TODO - ideally the knn should not be defined here, but somehow be defined by the user in the preset
|
|
def get_initialized_knn(self):
|
|
num_actions = len(self.spaces.action.actions)
|
|
action_max_abs_range = self.spaces.action.filtered_action_space.max_abs_range if \
|
|
(hasattr(self.spaces.action, 'filtered_action_space') and
|
|
isinstance(self.spaces.action.filtered_action_space, BoxActionSpace)) \
|
|
else 1.0
|
|
keys = np.expand_dims((np.arange(num_actions) / (num_actions - 1) - 0.5) * 2, 1) * action_max_abs_range
|
|
values = np.expand_dims(np.arange(num_actions), 1)
|
|
knn_tree = AnnoyDictionary(dict_size=num_actions, key_width=self.ap.algorithm.action_embedding_width)
|
|
knn_tree.add(keys, values, force_rebuild_tree=True)
|
|
|
|
return knn_tree
|
|
|