mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
* CoachInterface + tutorial * Some improvements and typo fixes * merge tutorial 0 and 4 * typo fix + additional tutorial changes * tutorial changes * added reading signals and experiment path argument
85 lines
3.9 KiB
Python
85 lines
3.9 KiB
Python
#
|
|
# Copyright (c) 2017 Intel Corporation
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
from typing import Tuple, List
|
|
|
|
from rl_coach.base_parameters import AgentParameters, VisualizationParameters, TaskParameters, \
|
|
PresetValidationParameters
|
|
from rl_coach.environments.environment import EnvironmentParameters, Environment
|
|
from rl_coach.filters.filter import NoInputFilter, NoOutputFilter
|
|
from rl_coach.graph_managers.graph_manager import GraphManager, ScheduleParameters
|
|
from rl_coach.level_manager import LevelManager
|
|
from rl_coach.utils import short_dynamic_import
|
|
|
|
|
|
class BasicRLGraphManager(GraphManager):
|
|
"""
|
|
A basic RL graph manager creates the common scheme of RL where there is a single agent which interacts with a
|
|
single environment.
|
|
"""
|
|
def __init__(self, agent_params: AgentParameters, env_params: EnvironmentParameters,
|
|
schedule_params: ScheduleParameters,
|
|
vis_params: VisualizationParameters=VisualizationParameters(),
|
|
preset_validation_params: PresetValidationParameters = PresetValidationParameters(),
|
|
name='simple_rl_graph'):
|
|
super().__init__(name, schedule_params, vis_params)
|
|
|
|
self.agent_params = agent_params
|
|
self.env_params = env_params
|
|
self.preset_validation_params = preset_validation_params
|
|
self.agent_params.visualization = vis_params
|
|
|
|
if self.agent_params.input_filter is None:
|
|
if env_params is not None:
|
|
self.agent_params.input_filter = env_params.default_input_filter()
|
|
else:
|
|
# In cases where there is no environment (e.g. batch-rl and imitation learning), there is nowhere to get
|
|
# a default filter from. So using a default no-filter.
|
|
# When there is no environment, the user is expected to define input/output filters (if required) using
|
|
# the preset.
|
|
self.agent_params.input_filter = NoInputFilter()
|
|
if self.agent_params.output_filter is None:
|
|
if env_params is not None:
|
|
self.agent_params.output_filter = env_params.default_output_filter()
|
|
else:
|
|
self.agent_params.output_filter = NoOutputFilter()
|
|
|
|
def _create_graph(self, task_parameters: TaskParameters) -> Tuple[List[LevelManager], List[Environment]]:
|
|
# environment loading
|
|
self.env_params.seed = task_parameters.seed
|
|
self.env_params.experiment_path = task_parameters.experiment_path
|
|
env = short_dynamic_import(self.env_params.path)(**self.env_params.__dict__,
|
|
visualization_parameters=self.visualization_parameters)
|
|
|
|
# agent loading
|
|
self.agent_params.task_parameters = task_parameters # TODO: this should probably be passed in a different way
|
|
self.agent_params.name = "agent"
|
|
agent = short_dynamic_import(self.agent_params.path)(self.agent_params)
|
|
|
|
# set level manager
|
|
level_manager = LevelManager(agents=agent, environment=env, name="main_level")
|
|
|
|
return [level_manager], [env]
|
|
|
|
def log_signal(self, signal_name, value):
|
|
self.level_managers[0].agents['agent'].agent_logger.create_signal_value(signal_name, value)
|
|
|
|
def get_signal_value(self, signal_name):
|
|
return self.level_managers[0].agents['agent'].agent_logger.get_signal_value(signal_name)
|
|
|
|
def get_agent(self):
|
|
return self.level_managers[0].agents['agent']
|
|
|