1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 19:20:19 +01:00
Files
coach/rl_coach/presets/Doom_Basic_DFP.py
2018-10-02 13:43:36 +03:00

53 lines
2.1 KiB
Python

from rl_coach.agents.dfp_agent import DFPAgentParameters, HandlingTargetsAfterEpisodeEnd
from rl_coach.base_parameters import VisualizationParameters, PresetValidationParameters
from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps
from rl_coach.environments.doom_environment import DoomEnvironmentParameters
from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager
from rl_coach.graph_managers.graph_manager import ScheduleParameters
from rl_coach.schedules import LinearSchedule
####################
# Graph Scheduling #
####################
schedule_params = ScheduleParameters()
schedule_params.improve_steps = TrainingSteps(10000000000)
schedule_params.steps_between_evaluation_periods = EnvironmentEpisodes(50)
schedule_params.evaluation_steps = EnvironmentEpisodes(3)
# There is no heatup for DFP. heatup length is determined according to batch size. See below.
#########
# Agent #
#########
agent_params = DFPAgentParameters()
schedule_params.heatup_steps = EnvironmentSteps(agent_params.network_wrappers['main'].batch_size)
agent_params.network_wrappers['main'].learning_rate = 0.0001
agent_params.exploration.epsilon_schedule = LinearSchedule(0.5, 0, 10000)
agent_params.exploration.evaluation_epsilon = 0
# this works better than the default which is 64
agent_params.algorithm.num_consecutive_playing_steps = EnvironmentSteps(1)
agent_params.algorithm.use_accumulated_reward_as_measurement = True
agent_params.algorithm.goal_vector = [0, 1] # ammo, accumulated_reward
agent_params.algorithm.handling_targets_after_episode_end = HandlingTargetsAfterEpisodeEnd.LastStep
###############
# Environment #
###############
env_params = DoomEnvironmentParameters(level='basic')
########
# Test #
########
preset_validation_params = PresetValidationParameters()
preset_validation_params.trace_max_env_steps = 2000
graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params,
schedule_params=schedule_params, vis_params=VisualizationParameters(),
preset_validation_params=preset_validation_params)