1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 19:20:19 +01:00
Files
coach/rl_coach/graph_managers/basic_rl_graph_manager.py
Gal Leibovich e3c7e526c7 Batch RL (#238)
2019-03-19 18:07:09 +02:00

74 lines
3.6 KiB
Python

#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import Tuple, List
from rl_coach.base_parameters import AgentParameters, VisualizationParameters, TaskParameters, \
PresetValidationParameters
from rl_coach.environments.environment import EnvironmentParameters, Environment
from rl_coach.filters.filter import NoInputFilter, NoOutputFilter
from rl_coach.graph_managers.graph_manager import GraphManager, ScheduleParameters
from rl_coach.level_manager import LevelManager
from rl_coach.utils import short_dynamic_import
class BasicRLGraphManager(GraphManager):
"""
A basic RL graph manager creates the common scheme of RL where there is a single agent which interacts with a
single environment.
"""
def __init__(self, agent_params: AgentParameters, env_params: EnvironmentParameters,
schedule_params: ScheduleParameters,
vis_params: VisualizationParameters=VisualizationParameters(),
preset_validation_params: PresetValidationParameters = PresetValidationParameters(),
name='simple_rl_graph'):
super().__init__(name, schedule_params, vis_params)
self.agent_params = agent_params
self.env_params = env_params
self.preset_validation_params = preset_validation_params
self.agent_params.visualization = vis_params
if self.agent_params.input_filter is None:
if env_params is not None:
self.agent_params.input_filter = env_params.default_input_filter()
else:
# In cases where there is no environment (e.g. batch-rl and imitation learning), there is nowhere to get
# a default filter from. So using a default no-filter.
# When there is no environment, the user is expected to define input/output filters (if required) using
# the preset.
self.agent_params.input_filter = NoInputFilter()
if self.agent_params.output_filter is None:
if env_params is not None:
self.agent_params.output_filter = env_params.default_output_filter()
else:
self.agent_params.output_filter = NoOutputFilter()
def _create_graph(self, task_parameters: TaskParameters) -> Tuple[List[LevelManager], List[Environment]]:
# environment loading
self.env_params.seed = task_parameters.seed
self.env_params.experiment_path = task_parameters.experiment_path
env = short_dynamic_import(self.env_params.path)(**self.env_params.__dict__,
visualization_parameters=self.visualization_parameters)
# agent loading
self.agent_params.task_parameters = task_parameters # TODO: this should probably be passed in a different way
self.agent_params.name = "agent"
agent = short_dynamic_import(self.agent_params.path)(self.agent_params)
# set level manager
level_manager = LevelManager(agents=agent, environment=env, name="main_level")
return [level_manager], [env]