1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 19:20:19 +01:00
Files
coach/agents/bc_agent.py
Itai Caspi 125c7ee38d Release 0.9
Main changes are detailed below:

New features -
* CARLA 0.7 simulator integration
* Human control of the game play
* Recording of human game play and storing / loading the replay buffer
* Behavioral cloning agent and presets
* Golden tests for several presets
* Selecting between deep / shallow image embedders
* Rendering through pygame (with some boost in performance)

API changes -
* Improved environment wrapper API
* Added an evaluate flag to allow convenient evaluation of existing checkpoints
* Improve frameskip definition in Gym

Bug fixes -
* Fixed loading of checkpoints for agents with more than one network
* Fixed the N Step Q learning agent python3 compatibility
2017-12-19 19:27:16 +02:00

41 lines
1.4 KiB
Python

#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from agents.imitation_agent import *
# Behavioral Cloning Agent
class BCAgent(ImitationAgent):
def __init__(self, env, tuning_parameters, replicated_device=None, thread_id=0):
ImitationAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id)
def learn_from_batch(self, batch):
current_states, _, actions, _, _, _ = self.extract_batch(batch)
# create the inputs for the network
input = current_states
# the targets for the network are the actions since this is supervised learning
if self.env.discrete_controls:
targets = np.eye(self.env.action_space_size)[[actions]]
else:
targets = actions
result = self.main_network.train_and_sync_networks(input, targets)
total_loss = result[0]
return total_loss