1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 19:20:19 +01:00
Files
coach/presets.py

1425 lines
53 KiB
Python

#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from configurations import *
import ast
import sys
def json_to_preset(json_path):
with open(json_path, 'r') as json_file:
run_dict = json.loads(json_file.read())
if run_dict['preset'] is None:
tuning_parameters = Preset(eval(run_dict['agent_type']), eval(run_dict['environment_type']),
eval(run_dict['exploration_policy_type']))
else:
tuning_parameters = eval(run_dict['preset'])()
# Override existing parts of the preset
if run_dict['agent_type'] is not None:
tuning_parameters.agent = eval(run_dict['agent_type'])()
if run_dict['environment_type'] is not None:
tuning_parameters.env = eval(run_dict['environment_type'])()
if run_dict['exploration_policy_type'] is not None:
tuning_parameters.exploration = eval(run_dict['exploration_policy_type'])()
# human control
if run_dict['play']:
tuning_parameters.agent.type = 'HumanAgent'
tuning_parameters.env.human_control = True
tuning_parameters.num_heatup_steps = 0
if run_dict['level']:
tuning_parameters.env.level = run_dict['level']
if run_dict['custom_parameter'] is not None:
unstripped_key_value_pairs = [pair.split('=') for pair in run_dict['custom_parameter'].split(';')]
stripped_key_value_pairs = [tuple([pair[0].strip(), ast.literal_eval(pair[1].strip())]) for pair in
unstripped_key_value_pairs]
# load custom parameters into run_dict
for key, value in stripped_key_value_pairs:
run_dict[key] = value
for key in ['agent_type', 'environment_type', 'exploration_policy_type', 'preset', 'custom_parameter']:
run_dict.pop(key, None)
# load parameters from run_dict to tuning_parameters
for key, value in run_dict.items():
if ((sys.version_info[0] == 2 and type(value) == unicode) or
(sys.version_info[0] == 3 and type(value) == str)):
value = '"{}"'.format(value)
exec('tuning_parameters.{} = {}'.format(key, value)) in globals(), locals()
return tuning_parameters
class Doom_Basic_DQN(Preset):
def __init__(self):
Preset.__init__(self, DQN, Doom, ExplorationParameters)
self.env.level = 'basic'
self.agent.num_episodes_in_experience_replay = 200
self.learning_rate = 0.00025
self.agent.num_steps_between_copying_online_weights_to_target = 1000
self.num_heatup_steps = 1000
class Doom_Basic_QRDQN(Preset):
def __init__(self):
Preset.__init__(self, QuantileRegressionDQN, Doom, ExplorationParameters)
self.env.level = 'basic'
self.agent.num_steps_between_copying_online_weights_to_target = 1000
self.learning_rate = 0.00025
self.agent.num_episodes_in_experience_replay = 200
self.num_heatup_steps = 1000
class Doom_Basic_OneStepQ(Preset):
def __init__(self):
Preset.__init__(self, NStepQ, Doom, ExplorationParameters)
self.env.level = 'basic'
self.learning_rate = 0.00025
self.num_heatup_steps = 0
self.agent.num_steps_between_copying_online_weights_to_target = 100
self.agent.optimizer_type = 'Adam'
self.clip_gradients = 1000
self.agent.targets_horizon = '1-Step'
class Doom_Basic_NStepQ(Preset):
def __init__(self):
Preset.__init__(self, NStepQ, Doom, ExplorationParameters)
self.env.level = 'basic'
self.learning_rate = 0.000025
self.num_heatup_steps = 0
self.agent.num_steps_between_copying_online_weights_to_target = 1000
self.agent.optimizer_type = 'Adam'
self.clip_gradients = 1000
class Doom_Basic_A2C(Preset):
def __init__(self):
Preset.__init__(self, ActorCritic, Doom, CategoricalExploration)
self.env.level = 'basic'
self.agent.policy_gradient_rescaler = 'A_VALUE'
self.learning_rate = 0.00025
self.num_heatup_steps = 100
self.env.reward_scaling = 100.
class Doom_Basic_Dueling_DDQN(Preset):
def __init__(self):
Preset.__init__(self, DDQN, Doom, ExplorationParameters)
self.env.level = 'basic'
self.agent.output_types = [OutputTypes.DuelingQ]
self.agent.num_episodes_in_experience_replay = 200
self.learning_rate = 0.00025
self.agent.num_steps_between_copying_online_weights_to_target = 1000
self.num_heatup_steps = 1000
class Doom_Basic_Dueling_DQN(Preset):
def __init__(self):
Preset.__init__(self, DuelingDQN, Doom, ExplorationParameters)
self.env.level = 'basic'
self.agent.num_episodes_in_experience_replay = 200
self.learning_rate = 0.00025
self.agent.num_steps_between_copying_online_weights_to_target = 1000
self.num_heatup_steps = 1000
class CartPole_Dueling_DDQN(Preset):
def __init__(self):
Preset.__init__(self, DDQN, GymVectorObservation, ExplorationParameters)
self.env.level = 'CartPole-v0'
self.agent.output_types = [OutputTypes.DuelingQ]
self.agent.num_episodes_in_experience_replay = 200
self.learning_rate = 0.00025
self.agent.num_steps_between_copying_online_weights_to_target = 100
self.num_heatup_steps = 1000
self.exploration.epsilon_decay_steps = 3000
self.agent.discount = 1.0
self.test = True
self.test_max_step_threshold = 100
self.test_min_return_threshold = 150
class Doom_Health_MMC(Preset):
def __init__(self):
Preset.__init__(self, MMC, Doom, ExplorationParameters)
self.env.level = 'HEALTH_GATHERING'
self.agent.num_episodes_in_experience_replay = 200
self.learning_rate = 0.00025
self.agent.num_steps_between_copying_online_weights_to_target = 1000
self.num_heatup_steps = 1000
self.exploration.epsilon_decay_steps = 10000
class CartPole_MMC(Preset):
def __init__(self):
Preset.__init__(self, MMC, GymVectorObservation, ExplorationParameters)
self.env.level = 'CartPole-v0'
self.agent.num_steps_between_copying_online_weights_to_target = 100
self.learning_rate = 0.00025
self.agent.num_episodes_in_experience_replay = 200
self.num_heatup_steps = 1000
self.exploration.epsilon_decay_steps = 3000
self.agent.discount = 1.0
self.test = True
self.test_max_step_threshold = 90
self.test_min_return_threshold = 150
class CartPole_PAL(Preset):
def __init__(self):
Preset.__init__(self, PAL, GymVectorObservation, ExplorationParameters)
self.env.level = 'CartPole-v0'
self.agent.num_steps_between_copying_online_weights_to_target = 100
self.learning_rate = 0.00025
self.agent.num_episodes_in_experience_replay = 200
self.num_heatup_steps = 1000
self.exploration.epsilon_decay_steps = 3000
self.agent.discount = 1.0
self.test = True
self.test_max_step_threshold = 100
self.test_min_return_threshold = 150
class CartPole_DFP(Preset):
def __init__(self):
Preset.__init__(self, DFP, GymVectorObservation, ExplorationParameters)
self.env.level = 'CartPole-v0'
self.agent.num_episodes_in_experience_replay = 200
self.learning_rate = 0.0001
self.num_heatup_steps = 1000
self.exploration.epsilon_decay_steps = 10000
self.agent.use_accumulated_reward_as_measurement = True
self.agent.goal_vector = [1.0]
class Doom_Basic_DFP(Preset):
def __init__(self):
Preset.__init__(self, DFP, Doom, ExplorationParameters)
self.env.level = 'BASIC'
self.agent.num_episodes_in_experience_replay = 200
self.learning_rate = 0.0001
self.num_heatup_steps = 1000
self.exploration.epsilon_decay_steps = 10000
self.agent.use_accumulated_reward_as_measurement = True
self.agent.goal_vector = [0.0, 1.0]
# self.agent.num_consecutive_playing_steps = 10
class Doom_Health_DFP(Preset):
def __init__(self):
Preset.__init__(self, DFP, Doom, ExplorationParameters)
self.env.level = 'HEALTH_GATHERING'
self.agent.num_episodes_in_experience_replay = 200
self.learning_rate = 0.00025
self.num_heatup_steps = 1000
self.exploration.epsilon_decay_steps = 10000
self.agent.use_accumulated_reward_as_measurement = True
class Doom_Deadly_Corridor_Bootstrapped_DQN(Preset):
def __init__(self):
Preset.__init__(self, BootstrappedDQN, Doom, BootstrappedDQNExploration)
self.env.level = 'deadly_corridor'
self.agent.num_episodes_in_experience_replay = 200
self.learning_rate = 0.00025
self.agent.num_steps_between_copying_online_weights_to_target = 1000
self.num_heatup_steps = 1000
class CartPole_Bootstrapped_DQN(Preset):
def __init__(self):
Preset.__init__(self, BootstrappedDQN, GymVectorObservation, BootstrappedDQNExploration)
self.env.level = 'CartPole-v0'
self.agent.num_steps_between_copying_online_weights_to_target = 200
self.learning_rate = 0.00025
self.agent.num_episodes_in_experience_replay = 200
self.num_heatup_steps = 1000
self.exploration.epsilon_decay_steps = 3000
self.agent.discount = 1.0
self.test = True
self.test_max_step_threshold = 200
self.test_min_return_threshold = 150
class CartPole_PG(Preset):
def __init__(self):
Preset.__init__(self, PolicyGradient, GymVectorObservation, CategoricalExploration)
self.env.level = 'CartPole-v0'
self.agent.policy_gradient_rescaler = 'FUTURE_RETURN_NORMALIZED_BY_TIMESTEP'
self.learning_rate = 0.001
self.num_heatup_steps = 100
self.agent.discount = 1.0
self.test = True
self.test_max_step_threshold = 150
self.test_min_return_threshold = 150
class CartPole_PPO(Preset):
def __init__(self):
Preset.__init__(self, PPO, GymVectorObservation, CategoricalExploration)
self.env.level = 'CartPole-v0'
self.learning_rate = 0.0001
self.num_heatup_steps = 0
self.agent.num_consecutive_training_steps = 1
self.agent.num_consecutive_playing_steps = 512
self.agent.discount = 0.99
self.batch_size = 128
self.agent.policy_gradient_rescaler = 'A_VALUE'
self.agent.optimizer_type = 'LBFGS'
self.env.normalize_observation = True
self.test = True
self.test_max_step_threshold = 200
self.test_min_return_threshold = 150
class CartPole_ClippedPPO(Preset):
def __init__(self):
Preset.__init__(self, ClippedPPO, GymVectorObservation, CategoricalExploration)
self.env.level = 'CartPole-v0'
self.learning_rate = 0.0001
self.num_heatup_steps = 0
self.agent.num_consecutive_training_steps = 1
self.agent.num_consecutive_playing_steps = 512
self.agent.discount = 0.99
self.batch_size = 64
self.agent.policy_gradient_rescaler = 'GAE'
self.agent.gae_lambda = 0.95
self.visualization.dump_csv = True
self.agent.optimizer_type = 'Adam'
self.env.normalize_observation = True
self.test = True
self.test_max_step_threshold = 200
self.test_min_return_threshold = 150
class CartPole_A2C(Preset):
def __init__(self):
Preset.__init__(self, ActorCritic, GymVectorObservation, CategoricalExploration)
self.env.level = 'CartPole-v0'
self.agent.policy_gradient_rescaler = 'A_VALUE'
self.learning_rate = 0.001
self.num_heatup_steps = 0
self.env.reward_scaling = 200.
self.agent.discount = 1.0
self.test = True
self.test_max_step_threshold = 300
self.test_min_return_threshold = 150
class CartPole_OneStepQ(Preset):
def __init__(self):
Preset.__init__(self, NStepQ, GymVectorObservation, ExplorationParameters)
self.env.level = 'CartPole-v0'
self.agent.num_steps_between_copying_online_weights_to_target = 100
self.learning_rate = 0.0001
self.num_heatup_steps = 0
self.agent.discount = 1.0
self.agent.targets_horizon = '1-Step'
class CartPole_NStepQ(Preset):
def __init__(self):
Preset.__init__(self, NStepQ, GymVectorObservation, ExplorationParameters)
self.env.level = 'CartPole-v0'
self.agent.num_steps_between_copying_online_weights_to_target = 100
self.learning_rate = 0.0001
self.exploration.epsilon_decay_steps = 10000
self.num_heatup_steps = 0
self.agent.discount = 0.99
self.agent.num_steps_between_gradient_updates = 5
self.test = True
self.test_max_step_threshold = 2000
self.test_min_return_threshold = 150
self.test_num_workers = 8
class CartPole_DQN(Preset):
def __init__(self):
Preset.__init__(self, DQN, GymVectorObservation, ExplorationParameters)
self.env.level = 'CartPole-v0'
self.agent.num_steps_between_copying_online_weights_to_target = 100
self.learning_rate = 0.00025
self.agent.num_episodes_in_experience_replay = 200
self.num_heatup_steps = 1000
self.exploration.epsilon_decay_steps = 3000
self.agent.discount = 1.0
self.test = True
self.test_max_step_threshold = 150
self.test_min_return_threshold = 150
class CartPole_C51(Preset):
def __init__(self):
Preset.__init__(self, CategoricalDQN, GymVectorObservation, ExplorationParameters)
self.env.level = 'CartPole-v0'
self.agent.num_steps_between_copying_online_weights_to_target = 100
self.learning_rate = 0.00025
self.agent.num_episodes_in_experience_replay = 200
self.num_heatup_steps = 1000
self.exploration.epsilon_decay_steps = 3000
self.agent.discount = 1.0
# self.env.reward_scaling = 20.
self.agent.v_min = 0.0
self.agent.v_max = 200.0
self.test = True
self.test_max_step_threshold = 150
self.test_min_return_threshold = 150
class CartPole_QRDQN(Preset):
def __init__(self):
Preset.__init__(self, QuantileRegressionDQN, GymVectorObservation, ExplorationParameters)
self.env.level = 'CartPole-v0'
self.agent.num_steps_between_copying_online_weights_to_target = 100
self.learning_rate = 0.00025
self.agent.num_episodes_in_experience_replay = 200
self.num_heatup_steps = 1000
self.exploration.epsilon_decay_steps = 3000
self.agent.discount = 1.0
# The below preset matches the hyper-parameters setting as in the original DQN paper.
# This a very resource intensive preset, and might easily blow up your RAM (> 100GB of usage).
# Try reducing the number of transitions in the experience replay (50e3 might be a reasonable number to start with),
# so to make sure it fits your RAM.
class Breakout_DQN(Preset):
def __init__(self):
Preset.__init__(self, DQN, Atari, ExplorationParameters)
self.env.level = 'BreakoutDeterministic-v4'
self.agent.num_steps_between_copying_online_weights_to_target = 10000
self.learning_rate = 0.00025
self.agent.num_transitions_in_experience_replay = 1000000
self.exploration.initial_epsilon = 1.0
self.exploration.final_epsilon = 0.1
self.exploration.epsilon_decay_steps = 1000000
self.exploration.evaluation_policy = 'EGreedy'
self.exploration.evaluation_epsilon = 0.05
self.num_heatup_steps = 50000
self.agent.num_consecutive_playing_steps = 4
self.evaluation_episodes = 1
self.evaluate_every_x_episodes = 25
self.agent.replace_mse_with_huber_loss = True
# self.env.crop_observation = True # TODO: remove
# self.rescaling_interpolation_type = 'nearest' # TODO: remove
class Breakout_DDQN(Preset):
def __init__(self):
Preset.__init__(self, DDQN, Atari, ExplorationParameters)
self.env.level = 'BreakoutDeterministic-v4'
self.agent.num_steps_between_copying_online_weights_to_target = 30000
self.learning_rate = 0.00025
self.agent.num_transitions_in_experience_replay = 1000000
self.exploration.initial_epsilon = 1.0
self.exploration.final_epsilon = 0.01
self.exploration.epsilon_decay_steps = 1000000
self.exploration.evaluation_policy = 'EGreedy'
self.exploration.evaluation_epsilon = 0.001
self.num_heatup_steps = 50000
self.agent.num_consecutive_playing_steps = 4
self.evaluation_episodes = 1
self.evaluate_every_x_episodes = 25
self.agent.replace_mse_with_huber_loss = True
class Breakout_Dueling_DDQN(Preset):
def __init__(self):
Preset.__init__(self, DDQN, Atari, ExplorationParameters)
self.env.level = 'BreakoutDeterministic-v4'
self.agent.output_types = [OutputTypes.DuelingQ]
self.agent.num_steps_between_copying_online_weights_to_target = 30000
self.learning_rate = 0.00025
self.agent.num_transitions_in_experience_replay = 1000000
self.exploration.initial_epsilon = 1.0
self.exploration.final_epsilon = 0.01
self.exploration.epsilon_decay_steps = 1000000
self.exploration.evaluation_policy = 'EGreedy'
self.exploration.evaluation_epsilon = 0.001
self.num_heatup_steps = 50000
self.agent.num_consecutive_playing_steps = 4
self.evaluation_episodes = 1
self.evaluate_every_x_episodes = 25
self.agent.replace_mse_with_huber_loss = True
class Alien_DQN(Preset):
def __init__(self):
Preset.__init__(self, DQN, Atari, ExplorationParameters)
self.env.level = 'AlienDeterministic-v4'
self.agent.num_steps_between_copying_online_weights_to_target = 10000
self.learning_rate = 0.00025
self.agent.num_transitions_in_experience_replay = 1000000
self.exploration.initial_epsilon = 1.0
self.exploration.final_epsilon = 0.1
self.exploration.epsilon_decay_steps = 1000000
self.exploration.evaluation_policy = 'EGreedy'
self.exploration.evaluation_epsilon = 0.05
self.num_heatup_steps = 50000
self.evaluation_episodes = 1
self.evaluate_every_x_episodes = 5
class Breakout_C51(Preset):
def __init__(self):
Preset.__init__(self, CategoricalDQN, Atari, ExplorationParameters)
self.env.level = 'BreakoutDeterministic-v4'
self.agent.num_steps_between_copying_online_weights_to_target = 10000
self.learning_rate = 0.00025
self.agent.num_transitions_in_experience_replay = 1000000
self.exploration.initial_epsilon = 1.0
self.exploration.final_epsilon = 0.01
self.exploration.epsilon_decay_steps = 1000000
self.env.reward_clipping_max = 1.0
self.env.reward_clipping_min = -1.0
self.exploration.evaluation_policy = 'EGreedy'
self.exploration.evaluation_epsilon = 0.001
self.num_heatup_steps = 50000
self.evaluation_episodes = 1
self.evaluate_every_x_episodes = 5000000
class Breakout_QRDQN(Preset):
def __init__(self):
Preset.__init__(self, QuantileRegressionDQN, Atari, ExplorationParameters)
self.env.level = 'BreakoutDeterministic-v4'
self.agent.num_steps_between_copying_online_weights_to_target = 10000
self.learning_rate = 0.00025
self.agent.num_transitions_in_experience_replay = 1000000
self.exploration.initial_epsilon = 1.0
self.exploration.final_epsilon = 0.01
self.exploration.epsilon_decay_steps = 1000000
self.exploration.evaluation_policy = 'EGreedy'
self.exploration.evaluation_epsilon = 0.001
self.num_heatup_steps = 50000
self.evaluation_episodes = 1
self.evaluate_every_x_episodes = 50
class Atari_DQN_TestBench(Preset):
def __init__(self):
Preset.__init__(self, DQN, Atari, ExplorationParameters)
self.env.level = 'BreakoutDeterministic-v4'
self.agent.num_steps_between_copying_online_weights_to_target = 10000
self.learning_rate = 0.00025
self.agent.num_transitions_in_experience_replay = 1000000
self.exploration.initial_epsilon = 1.0
self.exploration.final_epsilon = 0.1
self.exploration.epsilon_decay_steps = 1000000
self.exploration.evaluation_policy = 'EGreedy'
self.exploration.evaluation_epsilon = 0.05
self.num_heatup_steps = 10000
self.evaluation_episodes = 25
self.evaluate_every_x_episodes = 1000
self.num_training_iterations = 500
class Doom_Basic_PG(Preset):
def __init__(self):
Preset.__init__(self, PolicyGradient, Doom, CategoricalExploration)
self.env.level = 'basic'
self.agent.policy_gradient_rescaler = 'FUTURE_RETURN_NORMALIZED_BY_TIMESTEP'
self.learning_rate = 0.00001
self.num_heatup_steps = 0
self.agent.beta_entropy = 0.01
class InvertedPendulum_PG(Preset):
def __init__(self):
Preset.__init__(self, PolicyGradient, GymVectorObservation, AdditiveNoiseExploration)
self.env.level = 'InvertedPendulum-v1'
self.agent.policy_gradient_rescaler = 'FUTURE_RETURN_NORMALIZED_BY_TIMESTEP'
self.learning_rate = 0.001
self.num_heatup_steps = 0
class Pendulum_PG(Preset):
def __init__(self):
Preset.__init__(self, PolicyGradient, GymVectorObservation, AdditiveNoiseExploration)
self.env.level = 'Pendulum-v0'
self.agent.policy_gradient_rescaler = 'FUTURE_RETURN_NORMALIZED_BY_TIMESTEP'
self.learning_rate = 0.001
self.num_heatup_steps = 0
self.agent.apply_gradients_every_x_episodes = 10
class Pendulum_DDPG(Preset):
def __init__(self):
Preset.__init__(self, DDPG, GymVectorObservation, AdditiveNoiseExploration)
self.env.level = 'Pendulum-v0'
self.learning_rate = 0.001
self.num_heatup_steps = 1000
self.env.normalize_observation = False
self.test = True
self.test_max_step_threshold = 100
self.test_min_return_threshold = -250
class InvertedPendulum_DDPG(Preset):
def __init__(self):
Preset.__init__(self, DDPG, GymVectorObservation, OUExploration)
self.env.level = 'InvertedPendulum-v1'
self.learning_rate = 0.00025
self.num_heatup_steps = 100
self.env.normalize_observation = True
class InvertedPendulum_PPO(Preset):
def __init__(self):
Preset.__init__(self, PPO, GymVectorObservation, ExplorationParameters)
self.env.level = 'InvertedPendulum-v1'
self.learning_rate = 0.001
self.num_heatup_steps = 0
self.agent.num_consecutive_training_steps = 1
self.agent.num_consecutive_playing_steps = 5000
self.agent.discount = 0.99
self.batch_size = 128
self.agent.policy_gradient_rescaler = 'GAE'
self.agent.gae_lambda = 0.96
self.visualization.dump_csv = True
self.agent.optimizer_type = 'Adam'
self.agent.shared_optimizer = False
self.agent.async_training = True
self.env.normalize_observation = True
class Pendulum_ClippedPPO(Preset):
def __init__(self):
Preset.__init__(self, ClippedPPO, GymVectorObservation, ExplorationParameters)
self.env.level = 'Pendulum-v0'
self.learning_rate = 0.00005
self.num_heatup_steps = 0
self.agent.num_consecutive_training_steps = 1
self.agent.num_consecutive_playing_steps = 2048
self.agent.discount = 0.99
self.batch_size = 64
self.agent.policy_gradient_rescaler = 'GAE'
self.agent.gae_lambda = 0.95
self.visualization.dump_csv = True
self.agent.optimizer_type = 'Adam'
self.env.normalize_observation = True
self.agent.beta_entropy = 0.01
class Hopper_DPPO(Preset):
def __init__(self):
Preset.__init__(self, PPO, GymVectorObservation, ExplorationParameters)
self.env.level = 'Hopper-v1'
self.learning_rate = 0.00001
self.num_heatup_steps = 0
self.agent.num_consecutive_training_steps = 1
self.agent.num_consecutive_playing_steps = 5000
self.agent.discount = 0.99
self.batch_size = 128
self.agent.policy_gradient_rescaler = 'GAE'
self.agent.gae_lambda = 0.96
self.visualization.dump_csv = True
self.agent.optimizer_type = 'Adam'
self.agent.async_training = True
self.env.normalize_observation = True
class InvertedPendulum_ClippedPPO(Preset):
def __init__(self):
Preset.__init__(self, ClippedPPO, GymVectorObservation, ExplorationParameters)
self.env.level = 'InvertedPendulum-v1'
self.learning_rate = 0.00005
self.num_heatup_steps = 0
self.agent.num_consecutive_training_steps = 1
self.agent.num_consecutive_playing_steps = 2048
self.agent.discount = 0.99
self.batch_size = 64
self.agent.policy_gradient_rescaler = 'GAE'
self.agent.gae_lambda = 0.95
self.visualization.dump_csv = True
self.agent.optimizer_type = 'Adam'
self.env.normalize_observation = True
class Humanoid_ClippedPPO(Preset):
def __init__(self):
Preset.__init__(self, ClippedPPO, GymVectorObservation, ExplorationParameters)
self.env.level = 'Humanoid-v1'
self.learning_rate = 0.0001
self.num_heatup_steps = 0
self.agent.num_consecutive_training_steps = 1
self.agent.num_consecutive_playing_steps = 2048
self.agent.discount = 0.99
self.batch_size = 64
self.agent.policy_gradient_rescaler = 'GAE'
self.agent.gae_lambda = 0.95
self.visualization.dump_csv = True
self.agent.optimizer_type = 'Adam'
self.env.normalize_observation = True
class Hopper_ClippedPPO(Preset):
def __init__(self):
Preset.__init__(self, ClippedPPO, GymVectorObservation, ExplorationParameters)
self.env.level = 'Hopper-v1'
self.learning_rate = 0.0001
self.num_heatup_steps = 0
self.agent.num_consecutive_training_steps = 1
self.agent.num_consecutive_playing_steps = 2048
self.agent.discount = 0.99
self.batch_size = 64
self.agent.policy_gradient_rescaler = 'GAE'
self.agent.gae_lambda = 0.95
self.visualization.dump_csv = True
self.agent.optimizer_type = 'Adam'
self.env.normalize_observation = True
class InvertedPendulum_ClippedPPO_Roboschool(Preset):
def __init__(self):
Preset.__init__(self, ClippedPPO, Roboschool, ExplorationParameters)
self.env.level = 'RoboschoolInvertedPendulum-v1'
self.learning_rate = 0.0001
self.num_heatup_steps = 0
self.agent.num_consecutive_training_steps = 1
self.agent.num_consecutive_playing_steps = 2048
self.agent.discount = 0.99
self.batch_size = 64
self.agent.policy_gradient_rescaler = 'GAE'
self.agent.gae_lambda = 0.95
self.visualization.dump_csv = True
self.agent.optimizer_type = 'Adam'
self.env.normalize_observation = True
class HalfCheetah_ClippedPPO_Roboschool(Preset):
def __init__(self):
Preset.__init__(self, ClippedPPO, Roboschool, ExplorationParameters)
self.env.level = 'RoboschoolHalfCheetah-v1'
self.learning_rate = 0.0001
self.num_heatup_steps = 0
self.agent.num_consecutive_training_steps = 1
self.agent.num_consecutive_playing_steps = 2048
self.agent.discount = 0.99
self.batch_size = 64
self.agent.policy_gradient_rescaler = 'GAE'
self.agent.gae_lambda = 0.95
self.visualization.dump_csv = True
self.agent.optimizer_type = 'Adam'
self.env.normalize_observation = True
class Hopper_ClippedPPO_Roboschool(Preset):
def __init__(self):
Preset.__init__(self, ClippedPPO, Roboschool, ExplorationParameters)
self.env.level = 'RoboschoolHopper-v1'
self.learning_rate = 0.0001
self.num_heatup_steps = 0
self.agent.num_consecutive_training_steps = 1
self.agent.num_consecutive_playing_steps = 2048
self.agent.discount = 0.99
self.batch_size = 64
self.agent.policy_gradient_rescaler = 'GAE'
self.agent.gae_lambda = 0.95
self.visualization.dump_csv = True
self.agent.optimizer_type = 'Adam'
self.env.normalize_observation = True
class Ant_ClippedPPO(Preset):
def __init__(self):
Preset.__init__(self, ClippedPPO, GymVectorObservation, ExplorationParameters)
self.env.level = 'Ant-v1'
self.learning_rate = 0.0001
self.num_heatup_steps = 0
self.agent.num_consecutive_training_steps = 1
self.agent.num_consecutive_playing_steps = 2048
self.agent.discount = 0.99
self.batch_size = 64
self.agent.policy_gradient_rescaler = 'GAE'
self.agent.gae_lambda = 0.95
self.visualization.dump_csv = True
self.agent.optimizer_type = 'Adam'
self.env.normalize_observation = True
class Hopper_ClippedPPO_Distributed(Preset):
def __init__(self):
Preset.__init__(self, ClippedPPO, GymVectorObservation, ExplorationParameters)
self.env.level = 'Hopper-v1'
self.learning_rate = 0.00001
self.num_heatup_steps = 0
self.agent.num_consecutive_training_steps = 1
self.agent.num_consecutive_playing_steps = 10000
self.agent.discount = 0.99
self.batch_size = 128
self.agent.policy_gradient_rescaler = 'GAE'
self.agent.gae_lambda = 0.95
self.visualization.dump_csv = True
self.agent.optimizer_type = 'LBFGS'
self.env.normalize_observation = True
class Hopper_DDPG_Roboschool(Preset):
def __init__(self):
Preset.__init__(self, DDPG, Roboschool, OUExploration)
self.env.level = 'RoboschoolHopper-v1'
self.learning_rate = 0.00025
self.num_heatup_steps = 100
class Hopper_PPO_Roboschool(Preset):
def __init__(self):
Preset.__init__(self, PPO, Roboschool, ExplorationParameters)
self.env.level = 'RoboschoolHopper-v1'
self.learning_rate = 0.001
self.num_heatup_steps = 0
self.agent.num_consecutive_training_steps = 1
self.agent.num_consecutive_playing_steps = 5000
self.agent.discount = 0.99
self.batch_size = 128
self.agent.policy_gradient_rescaler = 'GENERALIZED_ADVANTAGE_ESTIMATION'
self.agent.gae_lambda = 0.96
self.visualization.dump_csv = True
self.agent.optimizer_type = 'LBFGS'
class Hopper_DDPG(Preset):
def __init__(self):
Preset.__init__(self, DDPG, GymVectorObservation, OUExploration)
self.env.level = 'Hopper-v1'
self.learning_rate = 0.00025
self.num_heatup_steps = 100
self.env.normalize_observation = True
class Hopper_DDDPG(Preset):
def __init__(self):
Preset.__init__(self, DDDPG, GymVectorObservation, OUExploration)
self.env.level = 'Hopper-v1'
self.learning_rate = 0.00025
self.num_heatup_steps = 100
self.env.normalize_observation = True
class Hopper_PPO(Preset):
def __init__(self):
Preset.__init__(self, PPO, GymVectorObservation, ExplorationParameters)
self.env.level = 'Hopper-v1'
self.learning_rate = 0.001
self.num_heatup_steps = 0
self.agent.num_consecutive_training_steps = 1
self.agent.num_consecutive_playing_steps = 5000
self.agent.discount = 0.99
self.batch_size = 128
self.agent.policy_gradient_rescaler = 'GAE'
self.agent.gae_lambda = 0.96
self.visualization.dump_csv = True
self.agent.optimizer_type = 'LBFGS'
# self.clip_gradients = 2
self.env.normalize_observation = True
class Walker_PPO(Preset):
def __init__(self):
Preset.__init__(self, PPO, GymVectorObservation, AdditiveNoiseExploration)
self.env.level = 'Walker2d-v1'
self.learning_rate = 0.001
self.num_heatup_steps = 0
self.agent.num_consecutive_training_steps = 1
self.agent.num_consecutive_playing_steps = 5000
self.agent.discount = 0.99
self.batch_size = 128
self.agent.policy_gradient_rescaler = 'A_VALUE'
self.agent.gae_lambda = 0.96
self.visualization.dump_csv = True
self.agent.optimizer_type = 'LBFGS'
self.env.normalize_observation = True
class HalfCheetah_DDPG(Preset):
def __init__(self):
Preset.__init__(self, DDPG, GymVectorObservation, OUExploration)
self.env.level = 'HalfCheetah-v1'
self.learning_rate = 0.00025
self.num_heatup_steps = 1000
self.env.normalize_observation = True
class Ant_DDPG(Preset):
def __init__(self):
Preset.__init__(self, DDPG, GymVectorObservation, OUExploration)
self.env.level = 'Ant-v1'
self.learning_rate = 0.00025
self.num_heatup_steps = 1000
self.env.normalize_observation = True
class Pendulum_NAF(Preset):
def __init__(self):
Preset.__init__(self, NAF, GymVectorObservation, AdditiveNoiseExploration)
self.env.level = 'Pendulum-v0'
self.learning_rate = 0.001
self.num_heatup_steps = 1000
self.batch_size = 100
# self.env.reward_scaling = 1000
self.test = True
self.test_max_step_threshold = 100
self.test_min_return_threshold = -250
class InvertedPendulum_NAF(Preset):
def __init__(self):
Preset.__init__(self, NAF, GymVectorObservation, AdditiveNoiseExploration)
self.env.level = 'InvertedPendulum-v1'
self.learning_rate = 0.001
self.num_heatup_steps = 1000
self.batch_size = 100
class Hopper_NAF(Preset):
def __init__(self):
Preset.__init__(self, NAF, GymVectorObservation, AdditiveNoiseExploration)
self.env.level = 'Hopper-v1'
self.learning_rate = 0.0005
self.num_heatup_steps = 1000
self.batch_size = 100
self.agent.async_training = True
self.env.normalize_observation = True
class CartPole_NEC(Preset):
def __init__(self):
Preset.__init__(self, NEC, GymVectorObservation, ExplorationParameters)
self.env.level = 'CartPole-v0'
self.learning_rate = 0.00025
self.agent.num_episodes_in_experience_replay = 200
self.num_heatup_steps = 1000
self.exploration.epsilon_decay_steps = 1000
self.exploration.final_epsilon = 0.1
self.agent.discount = 0.99
self.seed = 0
self.test = True
self.test_max_step_threshold = 200
self.test_min_return_threshold = 150
class Doom_Basic_NEC(Preset):
def __init__(self):
Preset.__init__(self, NEC, Doom, ExplorationParameters)
self.env.level = 'basic'
self.learning_rate = 0.00001
self.agent.num_transitions_in_experience_replay = 100000
# self.exploration.initial_epsilon = 0.1 # TODO: try exploration
# self.exploration.final_epsilon = 0.1
# self.exploration.epsilon_decay_steps = 1000000
self.num_heatup_steps = 200
self.evaluation_episodes = 1
self.evaluate_every_x_episodes = 5
self.seed = 123
class Montezuma_NEC(Preset):
def __init__(self):
Preset.__init__(self, NEC, Atari, ExplorationParameters)
self.env.level = 'MontezumaRevenge-v0'
self.agent.num_episodes_in_experience_replay = 200
self.learning_rate = 0.00025
self.num_heatup_steps = 1000
self.agent.num_playing_steps_between_two_training_steps = 1
class Breakout_NEC(Preset):
def __init__(self):
Preset.__init__(self, NEC, Atari, ExplorationParameters)
self.env.level = 'BreakoutDeterministic-v4'
self.agent.num_steps_between_copying_online_weights_to_target = 10000
self.learning_rate = 0.00001
self.agent.num_transitions_in_experience_replay = 1000000
self.exploration.initial_epsilon = 0.1
self.exploration.final_epsilon = 0.1
self.exploration.epsilon_decay_steps = 1000000
self.exploration.evaluation_policy = 'EGreedy'
self.exploration.evaluation_epsilon = 0.05
self.num_heatup_steps = 1000
self.env.reward_clipping_max = None
self.env.reward_clipping_min = None
self.evaluation_episodes = 1
self.evaluate_every_x_episodes = 25
self.seed = 123
class Doom_Health_NEC(Preset):
def __init__(self):
Preset.__init__(self, NEC, Doom, ExplorationParameters)
self.env.level = 'HEALTH_GATHERING'
self.agent.num_episodes_in_experience_replay = 200
self.learning_rate = 0.00025
self.num_heatup_steps = 1000
self.exploration.epsilon_decay_steps = 10000
self.agent.num_playing_steps_between_two_training_steps = 1
class Doom_Health_DQN(Preset):
def __init__(self):
Preset.__init__(self, DQN, Doom, ExplorationParameters)
self.env.level = 'HEALTH_GATHERING'
self.agent.num_episodes_in_experience_replay = 200
self.learning_rate = 0.00025
self.num_heatup_steps = 1000
self.exploration.epsilon_decay_steps = 10000
self.agent.num_steps_between_copying_online_weights_to_target = 1000
class Pong_NEC_LSTM(Preset):
def __init__(self):
Preset.__init__(self, NEC, Atari, ExplorationParameters)
self.env.level = 'PongDeterministic-v4'
self.learning_rate = 0.001
self.agent.num_transitions_in_experience_replay = 1000000
self.agent.middleware_type = MiddlewareTypes.LSTM
self.exploration.initial_epsilon = 0.5
self.exploration.final_epsilon = 0.1
self.exploration.epsilon_decay_steps = 1000000
self.num_heatup_steps = 500
class Pong_NEC(Preset):
def __init__(self):
Preset.__init__(self, NEC, Atari, ExplorationParameters)
self.env.level = 'PongDeterministic-v4'
self.learning_rate = 0.00001
self.agent.num_transitions_in_experience_replay = 100000
self.exploration.initial_epsilon = 0.1 # TODO: try exploration
self.exploration.final_epsilon = 0.1
self.exploration.epsilon_decay_steps = 1000000
self.num_heatup_steps = 2000
self.env.reward_clipping_max = None
self.env.reward_clipping_min = None
self.evaluation_episodes = 1
self.evaluate_every_x_episodes = 5
self.env.crop_observation = True # TODO: remove
self.env.random_initialization_steps = 1 # TODO: remove
# self.seed = 123
class Alien_NEC(Preset):
def __init__(self):
Preset.__init__(self, NEC, Atari, ExplorationParameters)
self.env.level = 'AlienDeterministic-v4'
self.learning_rate = 0.0001
self.agent.num_transitions_in_experience_replay = 100000
self.exploration.initial_epsilon = 0.1 # TODO: try exploration
self.exploration.final_epsilon = 0.1
self.exploration.epsilon_decay_steps = 1000000
self.num_heatup_steps = 3000
self.env.reward_clipping_max = None
self.env.reward_clipping_min = None
self.evaluation_episodes = 1
self.evaluate_every_x_episodes = 5
self.seed = 123
class Pong_DQN(Preset):
def __init__(self):
Preset.__init__(self, DQN, Atari, ExplorationParameters)
self.env.level = 'PongDeterministic-v4'
self.agent.num_steps_between_copying_online_weights_to_target = 10000
self.learning_rate = 0.00025
self.agent.num_transitions_in_experience_replay = 1000000
self.exploration.initial_epsilon = 1.0
self.exploration.final_epsilon = 0.1
self.exploration.epsilon_decay_steps = 1000000
self.exploration.evaluation_policy = 'EGreedy'
self.exploration.evaluation_epsilon = 0.05
self.num_heatup_steps = 50000
self.evaluation_episodes = 1
self.evaluate_every_x_episodes = 5
self.seed = 123
class CartPole_A3C(Preset):
def __init__(self):
Preset.__init__(self, ActorCritic, GymVectorObservation, CategoricalExploration)
self.env.level = 'CartPole-v0'
self.agent.policy_gradient_rescaler = 'GAE'
self.learning_rate = 0.0001
self.num_heatup_steps = 0
self.env.reward_scaling = 200.
self.agent.discount = 0.99
self.agent.apply_gradients_every_x_episodes = 1
self.agent.gae_lambda = 1
self.agent.beta_entropy = 0.01
self.agent.num_steps_between_gradient_updates = 5
self.agent.middleware_type = MiddlewareTypes.FC
self.test = True
self.test_max_step_threshold = 1000
self.test_min_return_threshold = 150
self.test_num_workers = 8
class MountainCar_A3C(Preset):
def __init__(self):
Preset.__init__(self, ActorCritic, GymVectorObservation, CategoricalExploration)
self.env.level = 'MountainCar-v0'
self.agent.policy_gradient_rescaler = 'GAE'
self.learning_rate = 0.0001
self.num_heatup_steps = 0
self.env.reward_scaling = 200.
self.agent.discount = 0.99
self.agent.apply_gradients_every_x_episodes = 1
self.agent.gae_lambda = 1
self.agent.beta_entropy = 0.01
self.agent.num_steps_between_gradient_updates = 5
self.agent.middleware_type = MiddlewareTypes.FC
class InvertedPendulum_A3C(Preset):
def __init__(self):
Preset.__init__(self, ActorCritic, GymVectorObservation, EntropyExploration)
self.env.level = 'InvertedPendulum-v1'
self.agent.policy_gradient_rescaler = 'A_VALUE'
self.agent.optimizer_type = 'Adam'
self.learning_rate = 0.0001
self.num_heatup_steps = 0
self.env.reward_scaling = 200.
self.agent.discount = 0.99
self.agent.apply_gradients_every_x_episodes = 1
self.agent.num_steps_between_gradient_updates = 30
self.agent.gae_lambda = 1
self.agent.beta_entropy = 0.005
self.clip_gradients = 40
self.agent.middleware_type = MiddlewareTypes.FC
class Hopper_A3C(Preset):
def __init__(self):
Preset.__init__(self, ActorCritic, GymVectorObservation, EntropyExploration)
self.env.level = 'Hopper-v1'
self.agent.policy_gradient_rescaler = 'GAE'
self.agent.optimizer_type = 'Adam'
self.learning_rate = 0.00002
self.num_heatup_steps = 0
self.env.reward_scaling = 20.
self.agent.discount = 0.99
self.agent.apply_gradients_every_x_episodes = 1
self.agent.num_steps_between_gradient_updates = 20
self.agent.gae_lambda = 0.98
self.agent.beta_entropy = 0.005
self.clip_gradients = 40
self.agent.middleware_type = MiddlewareTypes.FC
class HopperIceWall_A3C(Hopper_A3C):
def __init__(self):
Hopper_A3C.__init__(self)
self.env.level = 'HopperIceWall-v0'
class HopperStairs_A3C(Hopper_A3C):
def __init__(self):
Hopper_A3C.__init__(self)
self.env.level = 'HopperStairs-v0'
class HopperBullet_A3C(Hopper_A3C):
def __init__(self):
Hopper_A3C.__init__(self)
self.env.level = 'HopperBulletEnv-v0'
class Kuka_ClippedPPO(Preset):
def __init__(self):
Preset.__init__(self, ClippedPPO, GymVectorObservation, ExplorationParameters)
self.env.level = 'KukaBulletEnv-v0'
self.learning_rate = 0.0001
self.num_heatup_steps = 0
self.agent.num_consecutive_training_steps = 1
self.agent.num_consecutive_playing_steps = 2048
self.agent.discount = 0.99
self.batch_size = 64
self.agent.policy_gradient_rescaler = 'GAE'
self.agent.gae_lambda = 0.95
self.visualization.dump_csv = True
self.agent.optimizer_type = 'Adam'
self.env.normalize_observation = True
class Minitaur_ClippedPPO(Preset):
def __init__(self):
Preset.__init__(self, ClippedPPO, GymVectorObservation, ExplorationParameters)
self.env.level = 'MinitaurBulletEnv-v0'
self.learning_rate = 0.0001
self.num_heatup_steps = 0
self.agent.num_consecutive_training_steps = 1
self.agent.num_consecutive_playing_steps = 2048
self.agent.discount = 0.99
self.batch_size = 64
self.agent.policy_gradient_rescaler = 'GAE'
self.agent.gae_lambda = 0.95
self.visualization.dump_csv = True
self.agent.optimizer_type = 'Adam'
self.env.normalize_observation = True
class Walker_A3C(Preset):
def __init__(self):
Preset.__init__(self, ActorCritic, GymVectorObservation, EntropyExploration)
self.env.level = 'Walker2d-v1'
self.agent.policy_gradient_rescaler = 'A_VALUE'
self.agent.optimizer_type = 'Adam'
self.learning_rate = 0.00002
self.num_heatup_steps = 0
self.env.reward_scaling = 20.
self.agent.discount = 0.99
self.agent.apply_gradients_every_x_episodes = 1
self.agent.num_steps_between_gradient_updates = 20
self.agent.gae_lambda = 1
self.agent.beta_entropy = 0.005
self.clip_gradients = 40
self.agent.middleware_type = MiddlewareTypes.FC
class Ant_A3C(Preset):
def __init__(self):
Preset.__init__(self, ActorCritic, GymVectorObservation, EntropyExploration)
self.env.level = 'Ant-v1'
self.agent.policy_gradient_rescaler = 'A_VALUE'
self.agent.optimizer_type = 'Adam'
self.learning_rate = 0.00002
self.num_heatup_steps = 0
self.env.reward_scaling = 20.
self.agent.discount = 0.99
self.agent.apply_gradients_every_x_episodes = 1
self.agent.num_steps_between_gradient_updates = 20
self.agent.gae_lambda = 1
self.agent.beta_entropy = 0.005
self.clip_gradients = 40
self.agent.middleware_type = MiddlewareTypes.FC
self.env.normalize_observation = True
class AntBullet_A3C(Ant_A3C):
def __init__(self):
Ant_A3C.__init__(self)
self.env.level = 'AntBulletEnv-v0'
class AntMaze_A3C(Ant_A3C):
def __init__(self):
Ant_A3C.__init__(self)
self.env.level = 'AntMaze-v0'
class Humanoid_A3C(Preset):
def __init__(self):
Preset.__init__(self, ActorCritic, GymVectorObservation, EntropyExploration)
self.env.level = 'Humanoid-v1'
self.agent.policy_gradient_rescaler = 'A_VALUE'
self.agent.optimizer_type = 'Adam'
self.learning_rate = 0.00002
self.num_heatup_steps = 0
self.env.reward_scaling = 20.
self.agent.discount = 0.99
self.agent.apply_gradients_every_x_episodes = 1
self.agent.num_steps_between_gradient_updates = 20
self.agent.gae_lambda = 1
self.agent.beta_entropy = 0.005
self.clip_gradients = 40
self.agent.middleware_type = MiddlewareTypes.FC
self.env.normalize_observation = True
class Pendulum_A3C(Preset):
def __init__(self):
Preset.__init__(self, ActorCritic, GymVectorObservation, EntropyExploration)
self.env.level = 'Pendulum-v0'
self.agent.policy_gradient_rescaler = 'GAE'
self.agent.optimizer_type = 'Adam'
self.learning_rate = 0.0001
self.num_heatup_steps = 0
self.agent.discount = 0.99
self.agent.num_steps_between_gradient_updates = 5
self.agent.gae_lambda = 1
class BipedalWalker_A3C(Preset):
def __init__(self):
Preset.__init__(self, ActorCritic, GymVectorObservation, EntropyExploration)
self.env.level = 'BipedalWalker-v2'
self.agent.policy_gradient_rescaler = 'A_VALUE'
self.agent.optimizer_type = 'RMSProp'
self.learning_rate = 0.00002
self.num_heatup_steps = 0
self.env.reward_scaling = 50.
self.agent.discount = 0.99
self.agent.apply_gradients_every_x_episodes = 1
self.agent.num_steps_between_gradient_updates = 10
self.agent.gae_lambda = 1
self.agent.beta_entropy = 0.005
self.clip_gradients = None
self.agent.middleware_type = MiddlewareTypes.FC
class Doom_Basic_A3C(Preset):
def __init__(self):
Preset.__init__(self, ActorCritic, Doom, CategoricalExploration)
self.env.level = 'basic'
self.agent.policy_gradient_rescaler = 'GAE'
self.learning_rate = 0.0001
self.num_heatup_steps = 0
self.env.reward_scaling = 100.
self.agent.discount = 0.99
self.agent.apply_gradients_every_x_episodes = 1
self.agent.num_steps_between_gradient_updates = 30
self.agent.gae_lambda = 1
self.agent.beta_entropy = 0.01
self.clip_gradients = 40
self.agent.middleware_type = MiddlewareTypes.FC
class Pong_A3C(Preset):
def __init__(self):
Preset.__init__(self, ActorCritic, Atari, CategoricalExploration)
self.env.level = 'PongDeterministic-v4'
self.agent.policy_gradient_rescaler = 'GAE'
self.learning_rate = 0.0001
self.num_heatup_steps = 0
self.env.reward_scaling = 1.
self.agent.apply_gradients_every_x_episodes = 1
self.agent.num_steps_between_gradient_updates = 20
self.agent.gae_lambda = 1.
self.agent.beta_entropy = 0.01
self.clip_gradients = 40.0
self.agent.middleware_type = MiddlewareTypes.FC
class Breakout_A3C(Preset):
def __init__(self):
Preset.__init__(self, ActorCritic, Atari, CategoricalExploration)
self.env.level = 'BreakoutDeterministic-v4'
self.agent.policy_gradient_rescaler = 'GAE'
self.learning_rate = 0.0001
self.num_heatup_steps = 200
self.env.reward_scaling = 1.
self.agent.apply_gradients_every_x_episodes = 1
self.agent.num_steps_between_gradient_updates = 20
self.agent.gae_lambda = 1
self.agent.beta_entropy = 0.05
self.clip_gradients = 40.0
self.agent.middleware_type = MiddlewareTypes.FC
class Carla_A3C(Preset):
def __init__(self):
Preset.__init__(self, ActorCritic, Carla, EntropyExploration)
self.agent.embedder_complexity = EmbedderComplexity.Deep
self.agent.policy_gradient_rescaler = 'GAE'
self.learning_rate = 0.0001
self.num_heatup_steps = 0
# self.env.reward_scaling = 1.0e9
self.agent.discount = 0.99
self.agent.apply_gradients_every_x_episodes = 1
self.agent.num_steps_between_gradient_updates = 30
self.agent.gae_lambda = 1
self.agent.beta_entropy = 0.01
self.clip_gradients = 40
self.agent.middleware_type = MiddlewareTypes.FC
class Carla_DDPG(Preset):
def __init__(self):
Preset.__init__(self, DDPG, Carla, OUExploration)
self.agent.embedder_complexity = EmbedderComplexity.Deep
self.learning_rate = 0.0001
self.num_heatup_steps = 1000
self.agent.num_consecutive_training_steps = 5
class Carla_BC(Preset):
def __init__(self):
Preset.__init__(self, BC, Carla, ExplorationParameters)
self.agent.embedder_complexity = EmbedderComplexity.Deep
self.agent.load_memory_from_file_path = 'datasets/carla_town1.p'
self.learning_rate = 0.0005
self.num_heatup_steps = 0
self.evaluation_episodes = 5
self.batch_size = 120
self.evaluate_every_x_training_iterations = 5000
class Doom_Basic_BC(Preset):
def __init__(self):
Preset.__init__(self, BC, Doom, ExplorationParameters)
self.env.level = 'basic'
self.agent.load_memory_from_file_path = 'datasets/doom_basic.p'
self.learning_rate = 0.0005
self.num_heatup_steps = 0
self.evaluation_episodes = 5
self.batch_size = 120
self.evaluate_every_x_training_iterations = 100
self.num_training_iterations = 2000
class Doom_Defend_BC(Preset):
def __init__(self):
Preset.__init__(self, BC, Doom, ExplorationParameters)
self.env.level = 'defend'
self.agent.load_memory_from_file_path = 'datasets/doom_defend.p'
self.learning_rate = 0.0005
self.num_heatup_steps = 0
self.evaluation_episodes = 5
self.batch_size = 120
self.evaluate_every_x_training_iterations = 100
class Doom_Deathmatch_BC(Preset):
def __init__(self):
Preset.__init__(self, BC, Doom, ExplorationParameters)
self.env.level = 'deathmatch'
self.agent.load_memory_from_file_path = 'datasets/doom_deathmatch.p'
self.learning_rate = 0.0005
self.num_heatup_steps = 0
self.evaluation_episodes = 5
self.batch_size = 120
self.evaluate_every_x_training_iterations = 100
class MontezumaRevenge_BC(Preset):
def __init__(self):
Preset.__init__(self, BC, Atari, ExplorationParameters)
self.env.level = 'MontezumaRevenge-v0'
self.agent.load_memory_from_file_path = 'datasets/montezuma_revenge.p'
self.learning_rate = 0.0005
self.num_heatup_steps = 0
self.evaluation_episodes = 5
self.batch_size = 120
self.evaluate_every_x_training_iterations = 100
self.exploration.evaluation_epsilon = 0.05
self.exploration.evaluation_policy = 'EGreedy'
self.env.frame_skip = 1