1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-18 11:40:18 +01:00
Files
coach/rl_coach/presets/Starcraft_CollectMinerals_Dueling_DDQN.py
Scott Leishman f173e69187 introduce dockerfiles. (#169)
* introduce dockerfiles.

* ensure golden tests are run not just collected.

* Skip CI download of dockerfiles.

* add StarCraft environment and tests.

* add minimaps starcraft validation parameters.

* Add functional test running (from Ayoob)

* pin mujoco_py version to a 1.5 compatible release.

* fix config syntax issue.

* pin remaining mujoco_py install calls.

* Relax pin of gym version in gym Dockerfile.

* update makefile based on functional test filtering.
2019-04-03 19:33:17 +03:00

69 lines
2.9 KiB
Python

from collections import OrderedDict
from rl_coach.agents.ddqn_agent import DDQNAgentParameters
from rl_coach.architectures.embedder_parameters import InputEmbedderParameters
from rl_coach.architectures.head_parameters import DuelingQHeadParameters
from rl_coach.base_parameters import VisualizationParameters, PresetValidationParameters
from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps
from rl_coach.environments.starcraft2_environment import StarCraft2EnvironmentParameters
from rl_coach.filters.action.box_discretization import BoxDiscretization
from rl_coach.filters.filter import OutputFilter
from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager
from rl_coach.graph_managers.graph_manager import ScheduleParameters
from rl_coach.memories.memory import MemoryGranularity
from rl_coach.schedules import LinearSchedule
####################
# Graph Scheduling #
####################
schedule_params = ScheduleParameters()
schedule_params.improve_steps = TrainingSteps(10000000000)
schedule_params.steps_between_evaluation_periods = EnvironmentEpisodes(50)
schedule_params.evaluation_steps = EnvironmentEpisodes(1)
schedule_params.heatup_steps = EnvironmentSteps(50000)
#########
# Agent #
#########
agent_params = DDQNAgentParameters()
agent_params.network_wrappers['main'].learning_rate = 0.0001
agent_params.network_wrappers['main'].input_embedders_parameters = {
"screen": InputEmbedderParameters(input_rescaling={'image': 3.0})
}
agent_params.network_wrappers['main'].heads_parameters = [DuelingQHeadParameters()]
agent_params.memory.max_size = (MemoryGranularity.Transitions, 1000000)
# slave_agent_params.algorithm.num_steps_between_copying_online_weights_to_target = EnvironmentSteps(10000)
agent_params.exploration.epsilon_schedule = LinearSchedule(1.0, 0.1, 1000000)
agent_params.algorithm.num_consecutive_playing_steps = EnvironmentSteps(4)
agent_params.output_filter = \
OutputFilter(
action_filters=OrderedDict([
('discretization', BoxDiscretization(num_bins_per_dimension=4, force_int_bins=True))
]),
is_a_reference_filter=False
)
###############
# Environment #
###############
env_params = StarCraft2EnvironmentParameters(level='CollectMineralShards')
env_params.feature_screen_maps_to_use = [5]
env_params.feature_minimap_maps_to_use = [5]
########
# Test #
########
preset_validation_params = PresetValidationParameters()
preset_validation_params.test = True
preset_validation_params.min_reward_threshold = 50
preset_validation_params.max_episodes_to_achieve_reward = 200
preset_validation_params.num_workers = 1
graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params,
schedule_params=schedule_params, vis_params=VisualizationParameters(),
preset_validation_params=preset_validation_params)