1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 19:20:19 +01:00
Files
coach/agents/ddpg_agent.py
Gal Leibovich 1d4c3455e7 coach v0.8.0
2017-10-19 13:10:15 +03:00

105 lines
4.9 KiB
Python

#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from agents.actor_critic_agent import *
from configurations import *
# Deep Deterministic Policy Gradients Network - https://arxiv.org/pdf/1509.02971.pdf
class DDPGAgent(ActorCriticAgent):
def __init__(self, env, tuning_parameters, replicated_device=None, thread_id=0):
ActorCriticAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id,
create_target_network=True)
# define critic network
self.critic_network = self.main_network
# self.networks.append(self.critic_network)
# define actor network
tuning_parameters.agent.input_types = [InputTypes.Observation]
tuning_parameters.agent.output_types = [OutputTypes.Pi]
self.actor_network = NetworkWrapper(tuning_parameters, True, self.has_global, 'actor',
self.replicated_device, self.worker_device)
self.networks.append(self.actor_network)
self.q_values = Signal("Q")
self.signals.append(self.q_values)
def learn_from_batch(self, batch):
current_states, next_states, actions, rewards, game_overs, _ = self.extract_batch(batch)
# TD error = r + discount*max(q_st_plus_1) - q_st
next_actions = self.actor_network.target_network.predict([next_states])
q_st_plus_1 = self.critic_network.target_network.predict([next_states, next_actions])
TD_targets = np.expand_dims(rewards, -1) + \
(1.0 - np.expand_dims(game_overs, -1)) * self.tp.agent.discount * q_st_plus_1
# get the gradients of the critic output with respect to the action
actions_mean = self.actor_network.online_network.predict(current_states)
critic_online_network = self.critic_network.online_network
action_gradients = self.critic_network.sess.run(critic_online_network.gradients_wrt_inputs[1],
feed_dict={
critic_online_network.inputs[0]: current_states,
critic_online_network.inputs[1]: actions_mean,
})[0]
# train the critic
if len(actions.shape) == 1:
actions = np.expand_dims(actions, -1)
result = self.critic_network.train_and_sync_networks([current_states, actions], TD_targets)
total_loss = result[0]
# apply the gradients from the critic to the actor
actor_online_network = self.actor_network.online_network
gradients = self.actor_network.sess.run(actor_online_network.weighted_gradients,
feed_dict={
actor_online_network.gradients_weights_ph: -action_gradients,
actor_online_network.inputs[0]: current_states
})
if self.actor_network.has_global:
self.actor_network.global_network.apply_gradients(gradients)
self.actor_network.update_online_network()
else:
self.actor_network.online_network.apply_gradients(gradients)
return total_loss
def train(self):
return Agent.train(self)
def choose_action(self, curr_state, phase=RunPhase.TRAIN):
assert not self.env.discrete_controls, 'DDPG works only for continuous control problems'
# convert to batch so we can run it through the network
observation = np.expand_dims(np.array(curr_state['observation']), 0)
result = self.actor_network.online_network.predict(observation)
action_values = result[0].squeeze()
if phase == RunPhase.TRAIN:
action = self.exploration_policy.get_action(action_values)
else:
action = action_values
action = np.clip(action, self.env.action_space_low, self.env.action_space_high)
# get q value
action_batch = np.expand_dims(action, 0)
if type(action) != np.ndarray:
action_batch = np.array([[action]])
q_value = self.critic_network.online_network.predict([observation, action_batch])[0]
self.q_values.add_sample(q_value)
action_info = {"action_value": q_value}
return action, action_info