mirror of
https://github.com/gryf/coach.git
synced 2026-02-14 21:15:53 +01:00
1. Having the standard checkpoint prefix in order for the data store to grab it, and sync it to S3. 2. Removing the reference to Redis so that it won't try to pickle that in. 3. Enable restoring a checkpoint into a single-worker run, which was saved by a single-node-multiple-worker run.
297 lines
12 KiB
Python
297 lines
12 KiB
Python
#
|
|
# Copyright (c) 2017 Intel Corporation
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
import os
|
|
import pickle
|
|
|
|
import numpy as np
|
|
try:
|
|
import annoy
|
|
from annoy import AnnoyIndex
|
|
except ImportError:
|
|
from rl_coach.logger import failed_imports
|
|
failed_imports.append("annoy")
|
|
|
|
|
|
class AnnoyDictionary(object):
|
|
def __init__(self, dict_size, key_width, new_value_shift_coefficient=0.1, batch_size=100, key_error_threshold=0.01,
|
|
num_neighbors=50, override_existing_keys=True, rebuild_on_every_update=False):
|
|
self.rebuild_on_every_update = rebuild_on_every_update
|
|
self.max_size = dict_size
|
|
self.curr_size = 0
|
|
self.new_value_shift_coefficient = new_value_shift_coefficient
|
|
self.num_neighbors = num_neighbors
|
|
self.override_existing_keys = override_existing_keys
|
|
|
|
self.index = AnnoyIndex(key_width, metric='euclidean')
|
|
self.index.set_seed(1)
|
|
|
|
self.embeddings = np.zeros((dict_size, key_width))
|
|
self.values = np.zeros(dict_size)
|
|
self.additional_data = [None] * dict_size
|
|
|
|
self.lru_timestamps = np.zeros(dict_size)
|
|
self.current_timestamp = 0.0
|
|
|
|
# keys that are in this distance will be considered as the same key
|
|
self.key_error_threshold = key_error_threshold
|
|
|
|
self.initial_update_size = batch_size
|
|
self.min_update_size = self.initial_update_size
|
|
self.key_dimension = key_width
|
|
self.value_dimension = 1
|
|
self._reset_buffer()
|
|
|
|
self.built_capacity = 0
|
|
|
|
def add(self, keys, values, additional_data=None):
|
|
if not additional_data:
|
|
additional_data = [None] * len(keys)
|
|
|
|
# Adds new embeddings and values to the dictionary
|
|
indices = []
|
|
indices_to_remove = []
|
|
for i in range(keys.shape[0]):
|
|
index = self._lookup_key_index(keys[i])
|
|
if index and self.override_existing_keys:
|
|
# update existing value
|
|
self.values[index] += self.new_value_shift_coefficient * (values[i] - self.values[index])
|
|
self.additional_data[index[0][0]] = additional_data[i]
|
|
self.lru_timestamps[index] = self.current_timestamp
|
|
indices_to_remove.append(i)
|
|
else:
|
|
# add new
|
|
if self.curr_size >= self.max_size:
|
|
# find the LRU entry
|
|
index = np.argmin(self.lru_timestamps)
|
|
else:
|
|
index = self.curr_size
|
|
self.curr_size += 1
|
|
self.lru_timestamps[index] = self.current_timestamp
|
|
indices.append(index)
|
|
|
|
for i in reversed(indices_to_remove):
|
|
keys = np.delete(keys, i, 0)
|
|
values = np.delete(values, i, 0)
|
|
del additional_data[i]
|
|
|
|
self.buffered_keys = np.vstack((self.buffered_keys, keys))
|
|
self.buffered_values = np.vstack((self.buffered_values, values))
|
|
self.buffered_indices = self.buffered_indices + indices
|
|
self.buffered_additional_data = self.buffered_additional_data + additional_data
|
|
|
|
if len(self.buffered_indices) >= self.min_update_size:
|
|
self.min_update_size = max(self.initial_update_size, int(self.curr_size * 0.02))
|
|
self._rebuild_index()
|
|
elif self.rebuild_on_every_update:
|
|
self._rebuild_index()
|
|
|
|
self.current_timestamp += 1
|
|
|
|
# Returns the stored embeddings and values of the closest embeddings
|
|
def query(self, keys, k):
|
|
if not self.has_enough_entries(k):
|
|
# this will only happen when the DND is not yet populated with enough entries, which is only during heatup
|
|
# these values won't be used and therefore they are meaningless
|
|
return [0.0], [0.0], [0], [None]
|
|
|
|
_, indices = self._get_k_nearest_neighbors_indices(keys, k)
|
|
|
|
embeddings = []
|
|
values = []
|
|
additional_data = []
|
|
for ind in indices:
|
|
self.lru_timestamps[ind] = self.current_timestamp
|
|
embeddings.append(self.embeddings[ind])
|
|
values.append(self.values[ind])
|
|
curr_additional_data = []
|
|
for sub_ind in ind:
|
|
curr_additional_data.append(self.additional_data[sub_ind])
|
|
additional_data.append(curr_additional_data)
|
|
|
|
self.current_timestamp += 1
|
|
|
|
return embeddings, values, indices, additional_data
|
|
|
|
def has_enough_entries(self, k):
|
|
return self.curr_size > k and (self.built_capacity > k)
|
|
|
|
def sample_embeddings(self, num_embeddings):
|
|
return self.embeddings[np.random.choice(self.curr_size, num_embeddings)]
|
|
|
|
def _get_k_nearest_neighbors_indices(self, keys, k):
|
|
distances = []
|
|
indices = []
|
|
for key in keys:
|
|
index, distance = self.index.get_nns_by_vector(key, k, include_distances=True)
|
|
distances.append(distance)
|
|
indices.append(index)
|
|
return distances, indices
|
|
|
|
def _rebuild_index(self):
|
|
self.index.unbuild()
|
|
self.embeddings[self.buffered_indices] = self.buffered_keys
|
|
self.values[self.buffered_indices] = np.squeeze(self.buffered_values)
|
|
for i, data in zip(self.buffered_indices, self.buffered_additional_data):
|
|
self.additional_data[i] = data
|
|
for idx, key in zip(self.buffered_indices, self.buffered_keys):
|
|
self.index.add_item(idx, key)
|
|
|
|
self._reset_buffer()
|
|
|
|
self.index.build(self.num_neighbors)
|
|
self.built_capacity = self.curr_size
|
|
|
|
def _reset_buffer(self):
|
|
self.buffered_keys = np.zeros((0, self.key_dimension))
|
|
self.buffered_values = np.zeros((0, self.value_dimension))
|
|
self.buffered_indices = []
|
|
self.buffered_additional_data = []
|
|
|
|
def _lookup_key_index(self, key):
|
|
distance, index = self._get_k_nearest_neighbors_indices([key], 1)
|
|
if distance != [[]] and distance[0][0] <= self.key_error_threshold:
|
|
return index
|
|
return None
|
|
|
|
|
|
class QDND(object):
|
|
def __init__(self, dict_size, key_width, num_actions, new_value_shift_coefficient=0.1, key_error_threshold=0.01,
|
|
learning_rate=0.01, num_neighbors=50, return_additional_data=False, override_existing_keys=False,
|
|
rebuild_on_every_update=False):
|
|
self.dict_size = dict_size
|
|
self.key_width = key_width
|
|
self.num_actions = num_actions
|
|
self.new_value_shift_coefficient = new_value_shift_coefficient
|
|
self.key_error_threshold = key_error_threshold
|
|
self.learning_rate = learning_rate
|
|
self.num_neighbors = num_neighbors
|
|
self.return_additional_data = return_additional_data
|
|
self.override_existing_keys = override_existing_keys
|
|
self.dicts = []
|
|
|
|
# create a dict for each action
|
|
for a in range(num_actions):
|
|
new_dict = AnnoyDictionary(dict_size, key_width, new_value_shift_coefficient,
|
|
key_error_threshold=key_error_threshold, num_neighbors=num_neighbors,
|
|
override_existing_keys=override_existing_keys,
|
|
rebuild_on_every_update=rebuild_on_every_update)
|
|
self.dicts.append(new_dict)
|
|
|
|
def add(self, embeddings, actions, values, additional_data=None):
|
|
# add a new set of embeddings and values to each of the underlining dictionaries
|
|
embeddings = np.array(embeddings)
|
|
actions = np.array(actions)
|
|
values = np.array(values)
|
|
for a in range(self.num_actions):
|
|
idx = np.where(actions == a)
|
|
curr_action_embeddings = embeddings[idx]
|
|
curr_action_values = np.expand_dims(values[idx], -1)
|
|
if additional_data:
|
|
curr_additional_data = []
|
|
for i in idx[0]:
|
|
curr_additional_data.append(additional_data[i])
|
|
else:
|
|
curr_additional_data = None
|
|
|
|
self.dicts[a].add(curr_action_embeddings, curr_action_values, curr_additional_data)
|
|
return True
|
|
|
|
def query(self, embeddings, action, k):
|
|
# query for nearest neighbors to the given embeddings
|
|
dnd_embeddings = []
|
|
dnd_values = []
|
|
dnd_indices = []
|
|
dnd_additional_data = []
|
|
for i in range(len(embeddings)):
|
|
embedding, value, indices, additional_data = self.dicts[action].query([embeddings[i]], k)
|
|
dnd_embeddings.append(embedding[0])
|
|
dnd_values.append(value[0])
|
|
dnd_indices.append(indices[0])
|
|
dnd_additional_data.append(additional_data[0])
|
|
|
|
if self.return_additional_data:
|
|
return dnd_embeddings, dnd_values, dnd_indices, dnd_additional_data
|
|
else:
|
|
return dnd_embeddings, dnd_values, dnd_indices
|
|
|
|
def has_enough_entries(self, k):
|
|
# check if each of the action dictionaries has at least k entries
|
|
for a in range(self.num_actions):
|
|
if not self.dicts[a].has_enough_entries(k):
|
|
return False
|
|
return True
|
|
|
|
def update_keys_and_values(self, actions, key_gradients, value_gradients, indices):
|
|
# Update DND keys and values
|
|
for batch_action, batch_keys, batch_values, batch_indices in zip(actions, key_gradients, value_gradients, indices):
|
|
# Update keys (embeddings) and values in DND
|
|
for i, index in enumerate(batch_indices):
|
|
self.dicts[batch_action].embeddings[index, :] -= self.learning_rate * batch_keys[i, :]
|
|
self.dicts[batch_action].values[index] -= self.learning_rate * batch_values[i]
|
|
|
|
def sample_embeddings(self, num_embeddings):
|
|
num_actions = len(self.dicts)
|
|
embeddings = []
|
|
num_embeddings_per_action = int(num_embeddings/num_actions)
|
|
for action in range(num_actions):
|
|
embeddings.append(self.dicts[action].sample_embeddings(num_embeddings_per_action))
|
|
embeddings = np.vstack(embeddings)
|
|
|
|
# the numbers did not divide nicely, let's just randomly sample some more embeddings
|
|
if num_embeddings_per_action * num_actions < num_embeddings:
|
|
action = np.random.randint(0, num_actions)
|
|
extra_embeddings = self.dicts[action].sample_embeddings(num_embeddings -
|
|
num_embeddings_per_action * num_actions)
|
|
embeddings = np.vstack([embeddings, extra_embeddings])
|
|
return embeddings
|
|
|
|
def clean(self):
|
|
# create a new dict for each action
|
|
self.dicts = []
|
|
for a in range(self.num_actions):
|
|
new_dict = AnnoyDictionary(self.dict_size, self.key_width, self.new_value_shift_coefficient,
|
|
key_error_threshold=self.key_error_threshold, num_neighbors=self.num_neighbors)
|
|
self.dicts.append(new_dict)
|
|
|
|
|
|
def load_dnd(model_dir):
|
|
latest_checkpoint_id = -1
|
|
latest_checkpoint = ''
|
|
# get all checkpoint files
|
|
for fname in os.listdir(model_dir):
|
|
path = os.path.join(model_dir, fname)
|
|
if os.path.isdir(path) or fname.split('.')[-1] != 'srs':
|
|
continue
|
|
checkpoint_id = int(fname.split('_')[0])
|
|
if checkpoint_id > latest_checkpoint_id:
|
|
latest_checkpoint = fname
|
|
latest_checkpoint_id = checkpoint_id
|
|
|
|
with open(os.path.join(model_dir, str(latest_checkpoint)), 'rb') as f:
|
|
DND = pickle.load(f)
|
|
|
|
for a in range(DND.num_actions):
|
|
DND.dicts[a].index = AnnoyIndex(512, metric='euclidean')
|
|
DND.dicts[a].index.set_seed(1)
|
|
|
|
for idx, key in zip(range(DND.dicts[a].curr_size), DND.dicts[a].embeddings[:DND.dicts[a].curr_size]):
|
|
DND.dicts[a].index.add_item(idx, key)
|
|
|
|
DND.dicts[a].index.build(50)
|
|
|
|
return DND
|