1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 11:10:20 +01:00
Files
coach/agents/n_step_q_agent.py
Gal Leibovich 1d4c3455e7 coach v0.8.0
2017-10-19 13:10:15 +03:00

86 lines
3.5 KiB
Python

#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from agents.value_optimization_agent import *
from agents.policy_optimization_agent import *
from logger import *
from utils import *
import scipy.signal
# N Step Q Learning Agent - https://arxiv.org/abs/1602.01783
class NStepQAgent(ValueOptimizationAgent, PolicyOptimizationAgent):
def __init__(self, env, tuning_parameters, replicated_device=None, thread_id=0):
ValueOptimizationAgent.__init__(self, env, tuning_parameters, replicated_device, thread_id, create_target_network=True)
self.last_gradient_update_step_idx = 0
self.q_values = Signal('Q Values')
self.unclipped_grads = Signal('Grads (unclipped)')
self.signals.append(self.q_values)
self.signals.append(self.unclipped_grads)
def learn_from_batch(self, batch):
# batch contains a list of episodes to learn from
current_states, next_states, actions, rewards, game_overs, _ = self.extract_batch(batch)
# get the values for the current states
state_value_head_targets = self.main_network.online_network.predict(current_states)
# the targets for the state value estimator
num_transitions = len(game_overs)
if self.tp.agent.targets_horizon == '1-Step':
# 1-Step Q learning
q_st_plus_1 = self.main_network.target_network.predict(next_states)
for i in reversed(xrange(num_transitions)):
state_value_head_targets[i][actions[i]] = \
rewards[i] + (1.0 - game_overs[i]) * self.tp.agent.discount * np.max(q_st_plus_1[i], 0)
elif self.tp.agent.targets_horizon == 'N-Step':
# N-Step Q learning
if game_overs[-1]:
R = 0
else:
R = np.max(self.main_network.target_network.predict(np.expand_dims(next_states[-1], 0)))
for i in reversed(xrange(num_transitions)):
R = rewards[i] + self.tp.agent.discount * R
state_value_head_targets[i][actions[i]] = R
else:
assert True, 'The available values for targets_horizon are: 1-Step, N-Step'
# train
result = self.main_network.online_network.accumulate_gradients([current_states], [state_value_head_targets])
# logging
total_loss, losses, unclipped_grads = result[:3]
self.unclipped_grads.add_sample(unclipped_grads)
logger.create_signal_value('Value Loss', losses[0])
return total_loss
def train(self):
# update the target network of every network that has a target network
if self.total_steps_counter % self.tp.agent.num_steps_between_copying_online_weights_to_target == 0:
for network in self.networks:
network.update_target_network(self.tp.agent.rate_for_copying_weights_to_target)
logger.create_signal_value('Update Target Network', 1)
else:
logger.create_signal_value('Update Target Network', 0, overwrite=False)
return PolicyOptimizationAgent.train(self)