1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 19:20:19 +01:00
Files
coach/rl_coach/graph_managers/graph_manager.py
Ajay Deshpande fde73ced13 Simulating the act on the trainer. (#65)
* Remove the use of daemon threads for Redis subscribe.
* Emulate act and observe on trainer side to update internal vars.
2018-11-15 08:38:58 -08:00

673 lines
29 KiB
Python

#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import copy
import os
import time
from collections import OrderedDict
from distutils.dir_util import copy_tree, remove_tree
from typing import List, Tuple
import contextlib
from rl_coach.base_parameters import iterable_to_items, TaskParameters, DistributedTaskParameters, Frameworks, \
VisualizationParameters, \
Parameters, PresetValidationParameters
from rl_coach.core_types import TotalStepsCounter, RunPhase, PlayingStepsType, TrainingSteps, EnvironmentEpisodes, \
EnvironmentSteps, \
StepMethod, Transition
from rl_coach.environments.environment import Environment
from rl_coach.level_manager import LevelManager
from rl_coach.logger import screen, Logger
from rl_coach.utils import set_cpu, start_shell_command_and_wait
from rl_coach.data_stores.data_store_impl import get_data_store
from rl_coach.orchestrators.kubernetes_orchestrator import RunType
from rl_coach.memories.backend.memory_impl import get_memory_backend
from rl_coach.data_stores.data_store import SyncFiles
class ScheduleParameters(Parameters):
def __init__(self):
super().__init__()
self.heatup_steps = None
self.evaluation_steps = None
self.steps_between_evaluation_periods = None
self.improve_steps = None
class HumanPlayScheduleParameters(ScheduleParameters):
def __init__(self):
super().__init__()
self.heatup_steps = EnvironmentSteps(0)
self.evaluation_steps = EnvironmentEpisodes(0)
self.steps_between_evaluation_periods = EnvironmentEpisodes(100000000)
self.improve_steps = TrainingSteps(10000000000)
class SimpleScheduleWithoutEvaluation(ScheduleParameters):
def __init__(self, improve_steps=TrainingSteps(10000000000)):
super().__init__()
self.heatup_steps = EnvironmentSteps(0)
self.evaluation_steps = EnvironmentEpisodes(0)
self.steps_between_evaluation_periods = improve_steps
self.improve_steps = improve_steps
class SimpleSchedule(ScheduleParameters):
def __init__(self,
improve_steps=TrainingSteps(10000000000),
steps_between_evaluation_periods=EnvironmentEpisodes(50),
evaluation_steps=EnvironmentEpisodes(5)):
super().__init__()
self.heatup_steps = EnvironmentSteps(0)
self.evaluation_steps = evaluation_steps
self.steps_between_evaluation_periods = steps_between_evaluation_periods
self.improve_steps = improve_steps
class GraphManager(object):
"""
A graph manager is responsible for creating and initializing a graph of agents, including all its internal
components. It is then used in order to schedule the execution of operations on the graph, such as acting and
training.
"""
def __init__(self,
name: str,
schedule_params: ScheduleParameters,
vis_params: VisualizationParameters = VisualizationParameters()):
self.sess = None
self.level_managers = []
self.top_level_manager = None
self.environments = []
self.heatup_steps = schedule_params.heatup_steps
self.evaluation_steps = schedule_params.evaluation_steps
self.steps_between_evaluation_periods = schedule_params.steps_between_evaluation_periods
self.improve_steps = schedule_params.improve_steps
self.visualization_parameters = vis_params
self.name = name
self.task_parameters = None
self._phase = self.phase = RunPhase.UNDEFINED
self.preset_validation_params = PresetValidationParameters()
self.reset_required = False
# timers
self.graph_creation_time = None
self.last_checkpoint_saving_time = time.time()
# counters
self.total_steps_counters = {
RunPhase.HEATUP: TotalStepsCounter(),
RunPhase.TRAIN: TotalStepsCounter(),
RunPhase.TEST: TotalStepsCounter()
}
self.checkpoint_id = 0
self.checkpoint_saver = None
self.graph_logger = Logger()
def create_graph(self, task_parameters: TaskParameters=TaskParameters()):
self.graph_creation_time = time.time()
self.task_parameters = task_parameters
if isinstance(task_parameters, DistributedTaskParameters):
screen.log_title("Creating graph - name: {} task id: {} type: {}".format(self.__class__.__name__,
task_parameters.task_index,
task_parameters.job_type))
else:
screen.log_title("Creating graph - name: {}".format(self.__class__.__name__))
# "hide" the gpu if necessary
if task_parameters.use_cpu:
set_cpu()
# create a target server for the worker and a device
if isinstance(task_parameters, DistributedTaskParameters):
task_parameters.worker_target, task_parameters.device = \
self.create_worker_or_parameters_server(task_parameters=task_parameters)
# create the graph modules
self.level_managers, self.environments = self._create_graph(task_parameters)
# set self as the parent of all the level managers
self.top_level_manager = self.level_managers[0]
for level_manager in self.level_managers:
level_manager.parent_graph_manager = self
# create a session (it needs to be created after all the graph ops were created)
self.sess = None
self.create_session(task_parameters=task_parameters)
self._phase = self.phase = RunPhase.UNDEFINED
self.setup_logger()
return self
def _create_graph(self, task_parameters: TaskParameters) -> Tuple[List[LevelManager], List[Environment]]:
"""
Create all the graph modules and the graph scheduler
:param task_parameters: the parameters of the task
:return: the initialized level managers and environments
"""
raise NotImplementedError("")
@staticmethod
def _create_worker_or_parameters_server_tf(task_parameters: DistributedTaskParameters):
import tensorflow as tf
config = tf.ConfigProto()
config.allow_soft_placement = True # allow placing ops on cpu if they are not fit for gpu
config.gpu_options.allow_growth = True # allow the gpu memory allocated for the worker to grow if needed
config.gpu_options.per_process_gpu_memory_fraction = 0.2
config.intra_op_parallelism_threads = 1
config.inter_op_parallelism_threads = 1
from rl_coach.architectures.tensorflow_components.distributed_tf_utils import \
create_and_start_parameters_server, \
create_cluster_spec, create_worker_server_and_device
# create cluster spec
cluster_spec = create_cluster_spec(parameters_server=task_parameters.parameters_server_hosts,
workers=task_parameters.worker_hosts)
# create and start parameters server (non-returning function) or create a worker and a device setter
if task_parameters.job_type == "ps":
create_and_start_parameters_server(cluster_spec=cluster_spec,
config=config)
elif task_parameters.job_type == "worker":
return create_worker_server_and_device(cluster_spec=cluster_spec,
task_index=task_parameters.task_index,
use_cpu=task_parameters.use_cpu,
config=config)
else:
raise ValueError("The job type should be either ps or worker and not {}"
.format(task_parameters.job_type))
@staticmethod
def create_worker_or_parameters_server(task_parameters: DistributedTaskParameters):
if task_parameters.framework_type == Frameworks.tensorflow:
return GraphManager._create_worker_or_parameters_server_tf(task_parameters)
elif task_parameters.framework_type == Frameworks.mxnet:
raise NotImplementedError('Distributed training not implemented for MXNet')
else:
raise ValueError('Invalid framework {}'.format(task_parameters.framework_type))
def _create_session_tf(self, task_parameters: TaskParameters):
import tensorflow as tf
config = tf.ConfigProto()
config.allow_soft_placement = True # allow placing ops on cpu if they are not fit for gpu
config.gpu_options.allow_growth = True # allow the gpu memory allocated for the worker to grow if needed
# config.gpu_options.per_process_gpu_memory_fraction = 0.2
config.intra_op_parallelism_threads = 1
config.inter_op_parallelism_threads = 1
if isinstance(task_parameters, DistributedTaskParameters):
# the distributed tensorflow setting
from rl_coach.architectures.tensorflow_components.distributed_tf_utils import create_monitored_session
if hasattr(self.task_parameters, 'checkpoint_restore_dir') and self.task_parameters.checkpoint_restore_dir:
checkpoint_dir = os.path.join(task_parameters.experiment_path, 'checkpoint')
if os.path.exists(checkpoint_dir):
remove_tree(checkpoint_dir)
copy_tree(task_parameters.checkpoint_restore_dir, checkpoint_dir)
else:
checkpoint_dir = task_parameters.checkpoint_save_dir
self.sess = create_monitored_session(target=task_parameters.worker_target,
task_index=task_parameters.task_index,
checkpoint_dir=checkpoint_dir,
checkpoint_save_secs=task_parameters.checkpoint_save_secs,
config=config)
# set the session for all the modules
self.set_session(self.sess)
else:
self.variables_to_restore = tf.global_variables()
# self.variables_to_restore = [v for v in self.variables_to_restore if '/online' in v.name] TODO: is this necessary?
self.checkpoint_saver = tf.train.Saver(self.variables_to_restore)
# regular session
self.sess = tf.Session(config=config)
# set the session for all the modules
self.set_session(self.sess)
# restore from checkpoint if given
self.restore_checkpoint()
# the TF graph is static, and therefore is saved once - in the beginning of the experiment
if hasattr(self.task_parameters, 'checkpoint_save_dir') and self.task_parameters.checkpoint_save_dir:
self.save_graph()
def create_session(self, task_parameters: TaskParameters):
if task_parameters.framework_type == Frameworks.tensorflow:
self._create_session_tf(task_parameters)
elif task_parameters.framework_type == Frameworks.mxnet:
self.set_session(sess=None) # Initialize all modules
# TODO add checkpoint loading
else:
raise ValueError('Invalid framework {}'.format(task_parameters.framework_type))
def save_graph(self) -> None:
"""
Save the TF graph to a protobuf description file in the experiment directory
:return: None
"""
import tensorflow as tf
# write graph
tf.train.write_graph(tf.get_default_graph(),
logdir=self.task_parameters.checkpoint_save_dir,
name='graphdef.pb',
as_text=False)
def save_onnx_graph(self) -> None:
"""
Save the graph as an ONNX graph.
This requires the graph and the weights checkpoint to be stored in the experiment directory.
It then freezes the graph (merging the graph and weights checkpoint), and converts it to ONNX.
:return: None
"""
# collect input and output nodes
input_nodes = []
output_nodes = []
for level in self.level_managers:
for agent in level.agents.values():
for network in agent.networks.values():
for input_key, input in network.online_network.inputs.items():
if not input_key.startswith("output_"):
input_nodes.append(input.name)
for output in network.online_network.outputs:
output_nodes.append(output.name)
# TODO: make this framework agnostic
from rl_coach.architectures.tensorflow_components.architecture import save_onnx_graph
save_onnx_graph(input_nodes, output_nodes, self.task_parameters.checkpoint_save_dir)
def setup_logger(self) -> None:
# dump documentation
logger_prefix = "{graph_name}".format(graph_name=self.name)
self.graph_logger.set_logger_filenames(self.task_parameters.experiment_path, logger_prefix=logger_prefix,
add_timestamp=True, task_id=self.task_parameters.task_index)
if self.visualization_parameters.dump_parameters_documentation:
self.graph_logger.dump_documentation(str(self))
[manager.setup_logger() for manager in self.level_managers]
@property
def phase(self) -> RunPhase:
"""
Get the phase of the graph
:return: the current phase
"""
return self._phase
@phase.setter
def phase(self, val: RunPhase):
"""
Change the phase of the graph and all the hierarchy levels below it
:param val: the new phase
:return: None
"""
self._phase = val
for level_manager in self.level_managers:
level_manager.phase = val
for environment in self.environments:
environment.phase = val
@property
def current_step_counter(self) -> TotalStepsCounter:
return self.total_steps_counters[self.phase]
@contextlib.contextmanager
def phase_context(self, phase):
old_phase = self.phase
self.phase = phase
yield
self.phase = old_phase
def set_session(self, sess) -> None:
"""
Set the deep learning framework session for all the modules in the graph
:return: None
"""
[manager.set_session(sess) for manager in self.level_managers]
def heatup(self, steps: PlayingStepsType) -> None:
"""
Perform heatup for several steps, which means taking random actions and storing the results in memory
:param steps: the number of steps as a tuple of steps time and steps count
:return: None
"""
self.verify_graph_was_created()
if steps.num_steps > 0:
with self.phase_context(RunPhase.HEATUP):
screen.log_title("{}: Starting heatup".format(self.name))
# reset all the levels before starting to heatup
self.reset_internal_state(force_environment_reset=True)
# act for at least steps, though don't interrupt an episode
count_end = self.current_step_counter + steps
while self.current_step_counter < count_end:
self.act(EnvironmentEpisodes(1))
def handle_episode_ended(self) -> None:
"""
End an episode and reset all the episodic parameters
:return: None
"""
self.current_step_counter[EnvironmentEpisodes] += 1
[environment.handle_episode_ended() for environment in self.environments]
def train(self) -> None:
"""
Perform several training iterations for all the levels in the hierarchy
:param steps: number of training iterations to perform
:return: None
"""
self.verify_graph_was_created()
with self.phase_context(RunPhase.TRAIN):
self.current_step_counter[TrainingSteps] += 1
[manager.train() for manager in self.level_managers]
def reset_internal_state(self, force_environment_reset=False) -> None:
"""
Reset an episode for all the levels
:param force_environment_reset: force the environment to reset the episode even if it has some conditions that
tell it not to. for example, if ale life is lost, gym will tell the agent that
the episode is finished but won't actually reset the episode if there are more
lives available
:return: None
"""
self.verify_graph_was_created()
self.reset_required = False
[environment.reset_internal_state(force_environment_reset) for environment in self.environments]
[manager.reset_internal_state() for manager in self.level_managers]
def act(self, steps: PlayingStepsType, wait_for_full_episodes=False) -> None:
"""
Do several steps of acting on the environment
:param wait_for_full_episodes: if set, act for at least `steps`, but make sure that the last episode is complete
:param steps: the number of steps as a tuple of steps time and steps count
"""
self.verify_graph_was_created()
if hasattr(self, 'data_store_params') and hasattr(self.agent_params.memory, 'memory_backend_params'):
if self.agent_params.memory.memory_backend_params.run_type == str(RunType.ROLLOUT_WORKER):
data_store = get_data_store(self.data_store_params)
data_store.load_from_store()
# perform several steps of playing
count_end = self.current_step_counter + steps
result = None
while self.current_step_counter < count_end or (wait_for_full_episodes and result is not None and not result.game_over):
# reset the environment if the previous episode was terminated
if self.reset_required:
self.reset_internal_state()
steps_begin = self.environments[0].total_steps_counter
result = self.top_level_manager.step(None)
steps_end = self.environments[0].total_steps_counter
# add the diff between the total steps before and after stepping, such that environment initialization steps
# (like in Atari) will not be counted.
# We add at least one step so that even if no steps were made (in case no actions are taken in the training
# phase), the loop will end eventually.
self.current_step_counter[EnvironmentSteps] += max(1, steps_end - steps_begin)
if result.game_over:
self.handle_episode_ended()
self.reset_required = True
def train_and_act(self, steps: StepMethod) -> None:
"""
Train the agent by doing several acting steps followed by several training steps continually
:param steps: the number of steps as a tuple of steps time and steps count
:return: None
"""
self.verify_graph_was_created()
# perform several steps of training interleaved with acting
if steps.num_steps > 0:
with self.phase_context(RunPhase.TRAIN):
self.reset_internal_state(force_environment_reset=True)
count_end = self.current_step_counter + steps
while self.current_step_counter < count_end:
# The actual steps being done on the environment are decided by the agents themselves.
# This is just an high-level controller.
self.act(EnvironmentSteps(1))
self.train()
self.occasionally_save_checkpoint()
def sync(self) -> None:
"""
Sync the global network parameters to the graph
:return:
"""
[manager.sync() for manager in self.level_managers]
def evaluate(self, steps: PlayingStepsType, keep_networks_in_sync: bool=False) -> bool:
"""
Perform evaluation for several steps
:param steps: the number of steps as a tuple of steps time and steps count
:param keep_networks_in_sync: sync the network parameters with the global network before each episode
:return: bool, True if the target reward and target success has been reached
"""
self.verify_graph_was_created()
if steps.num_steps > 0:
with self.phase_context(RunPhase.TEST):
# reset all the levels before starting to evaluate
self.reset_internal_state(force_environment_reset=True)
self.sync()
# act for at least `steps`, though don't interrupt an episode
count_end = self.current_step_counter + steps
while self.current_step_counter < count_end:
self.act(EnvironmentEpisodes(1))
self.sync()
if self.should_stop():
if self.task_parameters.checkpoint_save_dir:
open(os.path.join(self.task_parameters.checkpoint_save_dir, SyncFiles.FINISHED.value), 'w').close()
if hasattr(self, 'data_store_params'):
data_store = get_data_store(self.data_store_params)
data_store.save_to_store()
screen.success("Reached required success rate. Exiting.")
return True
return False
def improve(self):
"""
The main loop of the run.
Defined in the following steps:
1. Heatup
2. Repeat:
2.1. Repeat:
2.1.1. Act
2.1.2. Train
2.1.3. Possibly save checkpoint
2.2. Evaluate
:return: None
"""
self.verify_graph_was_created()
# initialize the network parameters from the global network
self.sync()
# heatup
self.heatup(self.heatup_steps)
# improve
if self.task_parameters.task_index is not None:
screen.log_title("Starting to improve {} task index {}".format(self.name, self.task_parameters.task_index))
else:
screen.log_title("Starting to improve {}".format(self.name))
count_end = self.total_steps_counters[RunPhase.TRAIN] + self.improve_steps
while self.total_steps_counters[RunPhase.TRAIN] < count_end:
self.train_and_act(self.steps_between_evaluation_periods)
if self.evaluate(self.evaluation_steps):
break
def _restore_checkpoint_tf(self, checkpoint_dir: str):
import tensorflow as tf
checkpoint = tf.train.get_checkpoint_state(checkpoint_dir)
screen.log_title("Loading checkpoint: {}".format(checkpoint.model_checkpoint_path))
variables = {}
for var_name, _ in tf.contrib.framework.list_variables(checkpoint_dir):
# Load the variable
var = tf.contrib.framework.load_variable(checkpoint_dir, var_name)
# Set the new name
new_name = var_name
new_name = new_name.replace('global/', 'online/')
variables[new_name] = var
for v in self.variables_to_restore:
self.sess.run(v.assign(variables[v.name.split(':')[0]]))
def restore_checkpoint(self):
self.verify_graph_was_created()
# TODO: find better way to load checkpoints that were saved with a global network into the online network
if hasattr(self.task_parameters, 'checkpoint_restore_dir') and self.task_parameters.checkpoint_restore_dir:
if self.task_parameters.framework_type == Frameworks.tensorflow:
self._restore_checkpoint_tf(self.task_parameters.checkpoint_restore_dir)
elif self.task_parameters.framework_type == Frameworks.mxnet:
# TODO implement checkpoint restore
pass
else:
raise ValueError('Invalid framework {}'.format(self.task_parameters.framework_type))
def occasionally_save_checkpoint(self):
# only the chief process saves checkpoints
if self.task_parameters.checkpoint_save_secs \
and time.time() - self.last_checkpoint_saving_time >= self.task_parameters.checkpoint_save_secs \
and (self.task_parameters.task_index == 0 # distributed
or self.task_parameters.task_index is None # single-worker
):
self.save_checkpoint()
def save_checkpoint(self):
if self.task_parameters.checkpoint_save_dir is None:
self.task_parameters.checkpoint_save_dir = os.path.join(self.task_parameters.experiment_path, 'checkpoint')
checkpoint_path = os.path.join(self.task_parameters.checkpoint_save_dir,
"{}_Step-{}.ckpt".format(
self.checkpoint_id,
self.total_steps_counters[RunPhase.TRAIN][EnvironmentSteps]))
if not isinstance(self.task_parameters, DistributedTaskParameters):
if self.checkpoint_saver is not None:
saved_checkpoint_path = self.checkpoint_saver.save(self.sess, checkpoint_path)
else:
saved_checkpoint_path = "<Not Saved>"
else:
saved_checkpoint_path = checkpoint_path
# this is required in order for agents to save additional information like a DND for example
[manager.save_checkpoint(self.checkpoint_id) for manager in self.level_managers]
# the ONNX graph will be stored only if checkpoints are stored and the -onnx flag is used
if self.task_parameters.export_onnx_graph:
self.save_onnx_graph()
screen.log_dict(
OrderedDict([
("Saving in path", saved_checkpoint_path),
]),
prefix="Checkpoint"
)
self.checkpoint_id += 1
self.last_checkpoint_saving_time = time.time()
if hasattr(self, 'data_store_params'):
data_store = get_data_store(self.data_store_params)
data_store.save_to_store()
def verify_graph_was_created(self):
"""
Verifies that the graph was already created, and if not, it creates it with the default task parameters
:return: None
"""
if self.graph_creation_time is None:
self.create_graph()
def __str__(self):
result = ""
for key, val in self.__dict__.items():
params = ""
if isinstance(val, list) or isinstance(val, dict) or isinstance(val, OrderedDict):
items = iterable_to_items(val)
for k, v in items:
params += "{}: {}\n".format(k, v)
else:
params = val
result += "{}: \n{}\n".format(key, params)
return result
def should_train(self) -> bool:
return any([manager.should_train() for manager in self.level_managers])
# TODO-remove - this is a temporary flow, used by the trainer worker, duplicated from observe() - need to create
# an external trainer flow reusing the existing flow and methods [e.g. observe(), step(), act()]
def emulate_act_on_trainer(self, steps: PlayingStepsType, transition: Transition) -> None:
"""
This emulates the act using the transition obtained from the rollout worker on the training worker
in case of distributed training.
Do several steps of acting on the environment
:param steps: the number of steps as a tuple of steps time and steps count
"""
self.verify_graph_was_created()
# perform several steps of playing
count_end = self.current_step_counter + steps
while self.current_step_counter < count_end:
# reset the environment if the previous episode was terminated
if self.reset_required:
self.reset_internal_state()
steps_begin = self.environments[0].total_steps_counter
self.top_level_manager.emulate_step_on_trainer(transition)
steps_end = self.environments[0].total_steps_counter
# add the diff between the total steps before and after stepping, such that environment initialization steps
# (like in Atari) will not be counted.
# We add at least one step so that even if no steps were made (in case no actions are taken in the training
# phase), the loop will end eventually.
self.current_step_counter[EnvironmentSteps] += max(1, steps_end - steps_begin)
if transition.game_over:
self.handle_episode_ended()
self.reset_required = True
def fetch_from_worker(self, num_steps=0):
if hasattr(self, 'memory_backend'):
for transition in self.memory_backend.fetch(num_steps):
self.emulate_act_on_trainer(EnvironmentSteps(1), transition)
def setup_memory_backend(self) -> None:
if hasattr(self.agent_params.memory, 'memory_backend_params'):
self.memory_backend = get_memory_backend(self.agent_params.memory.memory_backend_params)
def should_stop(self) -> bool:
return all([manager.should_stop() for manager in self.level_managers])