mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
432 lines
22 KiB
Python
432 lines
22 KiB
Python
#
|
|
# Copyright (c) 2017 Intel Corporation
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
import copy
|
|
from types import MethodType
|
|
from typing import Dict, List, Union
|
|
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
|
|
from rl_coach.architectures.embedder_parameters import InputEmbedderParameters
|
|
from rl_coach.architectures.head_parameters import HeadParameters
|
|
from rl_coach.architectures.middleware_parameters import MiddlewareParameters
|
|
from rl_coach.architectures.tensorflow_components.architecture import TensorFlowArchitecture
|
|
from rl_coach.architectures.tensorflow_components import utils
|
|
from rl_coach.base_parameters import AgentParameters, Device, DeviceType, EmbeddingMergerType
|
|
from rl_coach.core_types import PredictionType
|
|
from rl_coach.logger import screen
|
|
from rl_coach.spaces import SpacesDefinition, PlanarMapsObservationSpace, TensorObservationSpace
|
|
from rl_coach.utils import get_all_subclasses, dynamic_import_and_instantiate_module_from_params, indent_string
|
|
|
|
|
|
class GeneralTensorFlowNetwork(TensorFlowArchitecture):
|
|
"""
|
|
A generalized version of all possible networks implemented using tensorflow.
|
|
"""
|
|
# dictionary of variable-scope name to variable-scope object to prevent tensorflow from
|
|
# creating a new auxiliary variable scope even when name is properly specified
|
|
variable_scopes_dict = dict()
|
|
|
|
@staticmethod
|
|
def construct(variable_scope: str, devices: List[str], *args, **kwargs) -> 'GeneralTensorFlowNetwork':
|
|
"""
|
|
Construct a network class using the provided variable scope and on requested devices
|
|
:param variable_scope: string specifying variable scope under which to create network variables
|
|
:param devices: list of devices (can be list of Device objects, or string for TF distributed)
|
|
:param args: all other arguments for class initializer
|
|
:param kwargs: all other keyword arguments for class initializer
|
|
:return: a GeneralTensorFlowNetwork object
|
|
"""
|
|
if len(devices) > 1:
|
|
screen.warning("Tensorflow implementation only support a single device. Using {}".format(devices[0]))
|
|
|
|
def construct_on_device():
|
|
with tf.device(GeneralTensorFlowNetwork._tf_device(devices[0])):
|
|
return GeneralTensorFlowNetwork(*args, **kwargs)
|
|
|
|
# If variable_scope is in our dictionary, then this is not the first time that this variable_scope
|
|
# is being used with construct(). So to avoid TF adding an incrementing number to the end of the
|
|
# variable_scope to uniquify it, we have to both pass the previous variable_scope object to the new
|
|
# variable_scope() call and also recover the name space using name_scope
|
|
if variable_scope in GeneralTensorFlowNetwork.variable_scopes_dict:
|
|
variable_scope = GeneralTensorFlowNetwork.variable_scopes_dict[variable_scope]
|
|
with tf.variable_scope(variable_scope, auxiliary_name_scope=False) as vs:
|
|
with tf.name_scope(vs.original_name_scope):
|
|
return construct_on_device()
|
|
else:
|
|
with tf.variable_scope(variable_scope, auxiliary_name_scope=True) as vs:
|
|
# Add variable_scope object to dictionary for next call to construct
|
|
GeneralTensorFlowNetwork.variable_scopes_dict[variable_scope] = vs
|
|
return construct_on_device()
|
|
|
|
@staticmethod
|
|
def _tf_device(device: Union[str, MethodType, Device]) -> str:
|
|
"""
|
|
Convert device to tensorflow-specific device representation
|
|
:param device: either a specific string or method (used in distributed mode) which is returned without
|
|
any change or a Device type, which will be converted to a string
|
|
:return: tensorflow-specific string for device
|
|
"""
|
|
if isinstance(device, str) or isinstance(device, MethodType):
|
|
return device
|
|
elif isinstance(device, Device):
|
|
if device.device_type == DeviceType.CPU:
|
|
return "/cpu:0"
|
|
elif device.device_type == DeviceType.GPU:
|
|
return "/device:GPU:{}".format(device.index)
|
|
else:
|
|
raise ValueError("Invalid device_type: {}".format(device.device_type))
|
|
else:
|
|
raise ValueError("Invalid device instance type: {}".format(type(device)))
|
|
|
|
def __init__(self, agent_parameters: AgentParameters, spaces: SpacesDefinition, name: str,
|
|
global_network=None, network_is_local: bool=True, network_is_trainable: bool=False):
|
|
"""
|
|
:param agent_parameters: the agent parameters
|
|
:param spaces: the spaces definition of the agent
|
|
:param name: the name of the network
|
|
:param global_network: the global network replica that is shared between all the workers
|
|
:param network_is_local: is the network global (shared between workers) or local (dedicated to the worker)
|
|
:param network_is_trainable: is the network trainable (we can apply gradients on it)
|
|
"""
|
|
self.global_network = global_network
|
|
self.network_is_local = network_is_local
|
|
self.network_wrapper_name = name.split('/')[0]
|
|
self.network_parameters = agent_parameters.network_wrappers[self.network_wrapper_name]
|
|
self.num_heads_per_network = 1 if self.network_parameters.use_separate_networks_per_head else \
|
|
len(self.network_parameters.heads_parameters)
|
|
self.num_networks = 1 if not self.network_parameters.use_separate_networks_per_head else \
|
|
len(self.network_parameters.heads_parameters)
|
|
|
|
self.gradients_from_head_rescalers = []
|
|
self.gradients_from_head_rescalers_placeholders = []
|
|
self.update_head_rescaler_value_ops = []
|
|
|
|
self.adaptive_learning_rate_scheme = None
|
|
self.current_learning_rate = None
|
|
|
|
# init network modules containers
|
|
self.input_embedders = []
|
|
self.output_heads = []
|
|
super().__init__(agent_parameters, spaces, name, global_network,
|
|
network_is_local, network_is_trainable)
|
|
|
|
self.available_return_types = self._available_return_types()
|
|
self.is_training = None
|
|
|
|
def _available_return_types(self):
|
|
ret_dict = {cls: [] for cls in get_all_subclasses(PredictionType)}
|
|
|
|
components = self.input_embedders + [self.middleware] + self.output_heads
|
|
for component in components:
|
|
if not hasattr(component, 'return_type'):
|
|
raise ValueError((
|
|
"{} has no return_type attribute. Without this, it is "
|
|
"unclear how this component should be used."
|
|
).format(component))
|
|
|
|
if component.return_type is not None:
|
|
ret_dict[component.return_type].append(component)
|
|
|
|
return ret_dict
|
|
|
|
def predict_with_prediction_type(self, states: Dict[str, np.ndarray],
|
|
prediction_type: PredictionType) -> Dict[str, np.ndarray]:
|
|
"""
|
|
Search for a component[s] which has a return_type set to the to the requested PredictionType, and get
|
|
predictions for it.
|
|
|
|
:param states: The input states to the network.
|
|
:param prediction_type: The requested PredictionType to look for in the network components
|
|
:return: A dictionary with predictions for all components matching the requested prediction type
|
|
"""
|
|
|
|
ret_dict = {}
|
|
for component in self.available_return_types[prediction_type]:
|
|
ret_dict[component] = self.predict(inputs=states, outputs=component.output)
|
|
|
|
return ret_dict
|
|
|
|
def get_input_embedder(self, input_name: str, embedder_params: InputEmbedderParameters):
|
|
"""
|
|
Given an input embedder parameters class, creates the input embedder and returns it
|
|
:param input_name: the name of the input to the embedder (used for retrieving the shape). The input should
|
|
be a value within the state or the action.
|
|
:param embedder_params: the parameters of the class of the embedder
|
|
:return: the embedder instance
|
|
"""
|
|
allowed_inputs = copy.copy(self.spaces.state.sub_spaces)
|
|
allowed_inputs["action"] = copy.copy(self.spaces.action)
|
|
allowed_inputs["goal"] = copy.copy(self.spaces.goal)
|
|
|
|
if input_name not in allowed_inputs.keys():
|
|
raise ValueError("The key for the input embedder ({}) must match one of the following keys: {}"
|
|
.format(input_name, allowed_inputs.keys()))
|
|
|
|
emb_type = "vector"
|
|
if isinstance(allowed_inputs[input_name], TensorObservationSpace):
|
|
emb_type = "tensor"
|
|
elif isinstance(allowed_inputs[input_name], PlanarMapsObservationSpace):
|
|
emb_type = "image"
|
|
|
|
embedder_path = embedder_params.path(emb_type)
|
|
embedder_params_copy = copy.copy(embedder_params)
|
|
embedder_params_copy.activation_function = utils.get_activation_function(embedder_params.activation_function)
|
|
embedder_params_copy.input_rescaling = embedder_params_copy.input_rescaling[emb_type]
|
|
embedder_params_copy.input_offset = embedder_params_copy.input_offset[emb_type]
|
|
embedder_params_copy.name = input_name
|
|
module = dynamic_import_and_instantiate_module_from_params(embedder_params_copy,
|
|
path=embedder_path,
|
|
positional_args=[allowed_inputs[input_name].shape])
|
|
return module
|
|
|
|
def get_middleware(self, middleware_params: MiddlewareParameters):
|
|
"""
|
|
Given a middleware type, creates the middleware and returns it
|
|
:param middleware_params: the paramaeters of the middleware class
|
|
:return: the middleware instance
|
|
"""
|
|
mod_name = middleware_params.parameterized_class_name
|
|
middleware_path = middleware_params.path
|
|
middleware_params_copy = copy.copy(middleware_params)
|
|
middleware_params_copy.activation_function = utils.get_activation_function(middleware_params.activation_function)
|
|
module = dynamic_import_and_instantiate_module_from_params(middleware_params_copy, path=middleware_path)
|
|
return module
|
|
|
|
def get_output_head(self, head_params: HeadParameters, head_idx: int):
|
|
"""
|
|
Given a head type, creates the head and returns it
|
|
:param head_params: the parameters of the head to create
|
|
:param head_idx: the head index
|
|
:return: the head
|
|
"""
|
|
mod_name = head_params.parameterized_class_name
|
|
head_path = head_params.path
|
|
head_params_copy = copy.copy(head_params)
|
|
head_params_copy.activation_function = utils.get_activation_function(head_params_copy.activation_function)
|
|
return dynamic_import_and_instantiate_module_from_params(head_params_copy, path=head_path, extra_kwargs={
|
|
'agent_parameters': self.ap, 'spaces': self.spaces, 'network_name': self.network_wrapper_name,
|
|
'head_idx': head_idx, 'is_local': self.network_is_local})
|
|
|
|
def get_model(self):
|
|
# validate the configuration
|
|
if len(self.network_parameters.input_embedders_parameters) == 0:
|
|
raise ValueError("At least one input type should be defined")
|
|
|
|
if len(self.network_parameters.heads_parameters) == 0:
|
|
raise ValueError("At least one output type should be defined")
|
|
|
|
if self.network_parameters.middleware_parameters is None:
|
|
raise ValueError("Exactly one middleware type should be defined")
|
|
|
|
# ops for defining the training / testing phase
|
|
self.is_training = tf.Variable(False, trainable=False, collections=[tf.GraphKeys.LOCAL_VARIABLES])
|
|
self.is_training_placeholder = tf.placeholder("bool")
|
|
self.assign_is_training = tf.assign(self.is_training, self.is_training_placeholder)
|
|
|
|
for network_idx in range(self.num_networks):
|
|
with tf.variable_scope('network_{}'.format(network_idx)):
|
|
|
|
####################
|
|
# Input Embeddings #
|
|
####################
|
|
|
|
state_embedding = []
|
|
for input_name in sorted(self.network_parameters.input_embedders_parameters):
|
|
input_type = self.network_parameters.input_embedders_parameters[input_name]
|
|
# get the class of the input embedder
|
|
input_embedder = self.get_input_embedder(input_name, input_type)
|
|
self.input_embedders.append(input_embedder)
|
|
|
|
# input placeholders are reused between networks. on the first network, store the placeholders
|
|
# generated by the input_embedders in self.inputs. on the rest of the networks, pass
|
|
# the existing input_placeholders into the input_embedders.
|
|
if network_idx == 0:
|
|
input_placeholder, embedding = input_embedder()
|
|
self.inputs[input_name] = input_placeholder
|
|
else:
|
|
input_placeholder, embedding = input_embedder(self.inputs[input_name])
|
|
|
|
state_embedding.append(embedding)
|
|
|
|
##########
|
|
# Merger #
|
|
##########
|
|
|
|
if len(state_embedding) == 1:
|
|
state_embedding = state_embedding[0]
|
|
else:
|
|
if self.network_parameters.embedding_merger_type == EmbeddingMergerType.Concat:
|
|
state_embedding = tf.concat(state_embedding, axis=-1, name="merger")
|
|
elif self.network_parameters.embedding_merger_type == EmbeddingMergerType.Sum:
|
|
state_embedding = tf.add_n(state_embedding, name="merger")
|
|
|
|
##############
|
|
# Middleware #
|
|
##############
|
|
|
|
self.middleware = self.get_middleware(self.network_parameters.middleware_parameters)
|
|
_, self.state_embedding = self.middleware(state_embedding)
|
|
|
|
################
|
|
# Output Heads #
|
|
################
|
|
|
|
head_count = 0
|
|
for head_idx in range(self.num_heads_per_network):
|
|
|
|
if self.network_parameters.use_separate_networks_per_head:
|
|
# if we use separate networks per head, then the head type corresponds to the network idx
|
|
head_type_idx = network_idx
|
|
head_count = network_idx
|
|
else:
|
|
# if we use a single network with multiple embedders, then the head type is the current head idx
|
|
head_type_idx = head_idx
|
|
head_params = self.network_parameters.heads_parameters[head_type_idx]
|
|
|
|
for head_copy_idx in range(head_params.num_output_head_copies):
|
|
# create output head and add it to the output heads list
|
|
self.output_heads.append(
|
|
self.get_output_head(head_params,
|
|
head_idx*head_params.num_output_head_copies + head_copy_idx)
|
|
)
|
|
|
|
# rescale the gradients from the head
|
|
self.gradients_from_head_rescalers.append(
|
|
tf.get_variable('gradients_from_head_{}-{}_rescalers'.format(head_idx, head_copy_idx),
|
|
initializer=float(head_params.rescale_gradient_from_head_by_factor),
|
|
dtype=tf.float32))
|
|
|
|
self.gradients_from_head_rescalers_placeholders.append(
|
|
tf.placeholder('float',
|
|
name='gradients_from_head_{}-{}_rescalers'.format(head_type_idx, head_copy_idx)))
|
|
|
|
self.update_head_rescaler_value_ops.append(self.gradients_from_head_rescalers[head_count].assign(
|
|
self.gradients_from_head_rescalers_placeholders[head_count]))
|
|
|
|
head_input = (1-self.gradients_from_head_rescalers[head_count]) * tf.stop_gradient(self.state_embedding) + \
|
|
self.gradients_from_head_rescalers[head_count] * self.state_embedding
|
|
|
|
# build the head
|
|
if self.network_is_local:
|
|
output, target_placeholder, input_placeholders, importance_weight_ph = \
|
|
self.output_heads[-1](head_input)
|
|
|
|
self.targets.extend(target_placeholder)
|
|
self.importance_weights.extend(importance_weight_ph)
|
|
else:
|
|
output, input_placeholders = self.output_heads[-1](head_input)
|
|
|
|
self.outputs.extend(output)
|
|
# TODO: use head names as well
|
|
for placeholder_index, input_placeholder in enumerate(input_placeholders):
|
|
self.inputs['output_{}_{}'.format(head_type_idx, placeholder_index)] = input_placeholder
|
|
|
|
head_count += 1
|
|
|
|
# Losses
|
|
self.losses = tf.losses.get_losses(self.full_name)
|
|
self.losses += tf.losses.get_regularization_losses(self.full_name)
|
|
self.total_loss = tf.reduce_sum(self.losses)
|
|
# tf.summary.scalar('total_loss', self.total_loss)
|
|
|
|
# Learning rate
|
|
if self.network_parameters.learning_rate_decay_rate != 0:
|
|
self.adaptive_learning_rate_scheme = \
|
|
tf.train.exponential_decay(
|
|
self.network_parameters.learning_rate,
|
|
self.global_step,
|
|
decay_steps=self.network_parameters.learning_rate_decay_steps,
|
|
decay_rate=self.network_parameters.learning_rate_decay_rate,
|
|
staircase=True)
|
|
|
|
self.current_learning_rate = self.adaptive_learning_rate_scheme
|
|
else:
|
|
self.current_learning_rate = self.network_parameters.learning_rate
|
|
|
|
# Optimizer
|
|
if self.distributed_training and self.network_is_local and self.network_parameters.shared_optimizer:
|
|
# distributed training + is a local network + optimizer shared -> take the global optimizer
|
|
self.optimizer = self.global_network.optimizer
|
|
elif (self.distributed_training and self.network_is_local and not self.network_parameters.shared_optimizer) \
|
|
or self.network_parameters.shared_optimizer or not self.distributed_training:
|
|
# distributed training + is a global network + optimizer shared
|
|
# OR
|
|
# distributed training + is a local network + optimizer not shared
|
|
# OR
|
|
# non-distributed training
|
|
# -> create an optimizer
|
|
|
|
if self.network_parameters.optimizer_type == 'Adam':
|
|
self.optimizer = tf.train.AdamOptimizer(learning_rate=self.current_learning_rate,
|
|
beta1=self.network_parameters.adam_optimizer_beta1,
|
|
beta2=self.network_parameters.adam_optimizer_beta2,
|
|
epsilon=self.network_parameters.optimizer_epsilon)
|
|
elif self.network_parameters.optimizer_type == 'RMSProp':
|
|
self.optimizer = tf.train.RMSPropOptimizer(self.current_learning_rate,
|
|
decay=self.network_parameters.rms_prop_optimizer_decay,
|
|
epsilon=self.network_parameters.optimizer_epsilon)
|
|
elif self.network_parameters.optimizer_type == 'LBFGS':
|
|
self.optimizer = tf.contrib.opt.ScipyOptimizerInterface(self.total_loss, method='L-BFGS-B',
|
|
options={'maxiter': 25})
|
|
else:
|
|
raise Exception("{} is not a valid optimizer type".format(self.network_parameters.optimizer_type))
|
|
|
|
def __str__(self):
|
|
result = []
|
|
|
|
for network in range(self.num_networks):
|
|
network_structure = []
|
|
|
|
# embedder
|
|
for embedder in self.input_embedders:
|
|
network_structure.append("Input Embedder: {}".format(embedder.name))
|
|
network_structure.append(indent_string(str(embedder)))
|
|
|
|
if len(self.input_embedders) > 1:
|
|
network_structure.append("{} ({})".format(self.network_parameters.embedding_merger_type.name,
|
|
", ".join(["{} embedding".format(e.name) for e in self.input_embedders])))
|
|
|
|
# middleware
|
|
network_structure.append("Middleware:")
|
|
network_structure.append(indent_string(str(self.middleware)))
|
|
|
|
# head
|
|
if self.network_parameters.use_separate_networks_per_head:
|
|
heads = range(network, network+1)
|
|
else:
|
|
heads = range(0, len(self.output_heads))
|
|
|
|
for head_idx in heads:
|
|
head = self.output_heads[head_idx]
|
|
head_params = self.network_parameters.heads_parameters[head_idx]
|
|
if head_params.num_output_head_copies > 1:
|
|
network_structure.append("Output Head: {} (num copies = {})".format(head.name, head_params.num_output_head_copies))
|
|
else:
|
|
network_structure.append("Output Head: {}".format(head.name))
|
|
network_structure.append(indent_string(str(head)))
|
|
|
|
# finalize network
|
|
if self.num_networks > 1:
|
|
result.append("Sub-network for head: {}".format(self.output_heads[network].name))
|
|
result.append(indent_string('\n'.join(network_structure)))
|
|
else:
|
|
result.append('\n'.join(network_structure))
|
|
|
|
result = '\n'.join(result)
|
|
return result
|