mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 11:10:20 +01:00
141 lines
5.5 KiB
Python
141 lines
5.5 KiB
Python
#
|
|
# Copyright (c) 2017 Intel Corporation
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
import argparse
|
|
import os
|
|
|
|
import matplotlib
|
|
import matplotlib.pyplot as plt
|
|
|
|
from rl_coach.dashboard_components.signals_file import SignalsFile
|
|
|
|
|
|
class FigureMaker(object):
|
|
def __init__(self, path, cols, smoothness, signal_to_plot, x_axis, color):
|
|
self.experiments_path = path
|
|
self.environments = self.list_environments()
|
|
self.cols = cols
|
|
self.rows = int((len(self.environments) + cols - 1) / cols)
|
|
self.smoothness = smoothness
|
|
self.signal_to_plot = signal_to_plot
|
|
self.x_axis = x_axis
|
|
self.color = color
|
|
|
|
params = {
|
|
'axes.labelsize': 8,
|
|
'font.size': 10,
|
|
'legend.fontsize': 14,
|
|
'xtick.labelsize': 8,
|
|
'ytick.labelsize': 8,
|
|
'text.usetex': False,
|
|
'figure.figsize': [16, 30]
|
|
}
|
|
matplotlib.rcParams.update(params)
|
|
|
|
def list_environments(self):
|
|
environments = sorted([e.name for e in os.scandir(self.experiments_path) if e.is_dir()])
|
|
filtered_environments = self.filter_environments(environments)
|
|
return filtered_environments
|
|
|
|
def filter_environments(self, environments):
|
|
filtered_environments = []
|
|
for idx, environment in enumerate(environments):
|
|
path = os.path.join(self.experiments_path, environment)
|
|
experiments = [e.name for e in os.scandir(path) if e.is_dir()]
|
|
|
|
# take only the last updated experiment directory
|
|
last_experiment_dir = max([os.path.join(path, root) for root in experiments], key=os.path.getctime)
|
|
|
|
# make sure there is a csv file inside it
|
|
for file_path in os.listdir(last_experiment_dir):
|
|
full_file_path = os.path.join(last_experiment_dir, file_path)
|
|
if os.path.isfile(full_file_path) and file_path.endswith('.csv'):
|
|
filtered_environments.append((environment, full_file_path))
|
|
|
|
return filtered_environments
|
|
|
|
def plot_figures(self, prev_subplot_map=None):
|
|
subplot_map = {}
|
|
for idx, (environment, full_file_path) in enumerate(self.environments):
|
|
environment = environment.split('level')[1].split('-')[1].split('Deterministic')[0][1:]
|
|
if prev_subplot_map:
|
|
# skip on environments which were not plotted before
|
|
if environment not in prev_subplot_map.keys():
|
|
continue
|
|
subplot_idx = prev_subplot_map[environment]
|
|
else:
|
|
subplot_idx = idx + 1
|
|
print(environment)
|
|
axis = plt.subplot(self.rows, self.cols, subplot_idx)
|
|
subplot_map[environment] = subplot_idx
|
|
signals = SignalsFile(full_file_path)
|
|
signals.change_averaging_window(self.smoothness, force=True, signals=[self.signal_to_plot])
|
|
steps = signals.bokeh_source.data[self.x_axis]
|
|
rewards = signals.bokeh_source.data[self.signal_to_plot]
|
|
|
|
yloc = plt.MaxNLocator(4)
|
|
axis.yaxis.set_major_locator(yloc)
|
|
axis.ticklabel_format(style='sci', axis='x', scilimits=(0, 0))
|
|
plt.title(environment, fontsize=10, y=1.08)
|
|
plt.plot(steps, rewards, self.color, linewidth=0.8)
|
|
plt.subplots_adjust(hspace=2.0, wspace=0.4)
|
|
|
|
return subplot_map
|
|
|
|
def save_pdf(self, name):
|
|
plt.savefig(name + ".pdf", bbox_inches='tight')
|
|
|
|
def show_figures(self):
|
|
plt.show()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('-p', '--paths',
|
|
help="(string) Root directory of the experiments",
|
|
default=None,
|
|
type=str)
|
|
parser.add_argument('-c', '--cols',
|
|
help="(int) Number of plot columns",
|
|
default=6,
|
|
type=int)
|
|
parser.add_argument('-s', '--smoothness',
|
|
help="(int) Number of consequent episodes to average over",
|
|
default=100,
|
|
type=int)
|
|
parser.add_argument('-sig', '--signal',
|
|
help="(str) The name of the signal to plot",
|
|
default='Evaluation Reward',
|
|
type=str)
|
|
parser.add_argument('-x', '--x_axis',
|
|
help="(str) The meaning of the x axis",
|
|
default='Total steps',
|
|
type=str)
|
|
parser.add_argument('-pdf', '--pdf',
|
|
help="(str) A name of a pdf to save to",
|
|
default='atari',
|
|
type=str)
|
|
args = parser.parse_args()
|
|
|
|
paths = args.paths.split(",")
|
|
subplot_map = None
|
|
for idx, path in enumerate(paths):
|
|
maker = FigureMaker(path, cols=args.cols, smoothness=args.smoothness, signal_to_plot=args.signal, x_axis=args.x_axis, color='C{}'.format(idx))
|
|
subplot_map = maker.plot_figures(subplot_map)
|
|
plt.legend(paths)
|
|
maker.save_pdf(args.pdf)
|
|
maker.show_figures()
|