import functools import json import math import re from ebook_converter import entity_to_unicode XMLDECL_RE = re.compile(r'^\s*<[?]xml.*?[?]>') SVG_NS = 'http://www.w3.org/2000/svg' XLINK_NS = 'http://www.w3.org/1999/xlink' convert_entities = functools.partial(entity_to_unicode, result_exceptions={'<': '<', '>': '>', "'": ''', '"': '"', '&': '&'}) _span_pat = re.compile('', re.DOTALL | re.IGNORECASE) LIGATURES = {'\uFB00': 'ff', '\uFB01': 'fi', '\uFB02': 'fl', '\uFB03': 'ffi', '\uFB04': 'ffl', '\uFB05': 'ft', '\uFB06': 'st'} # '\u00c6': 'AE', # '\u00e6': 'ae', # '\u0152': 'OE', # '\u0153': 'oe', # '\u0132': 'IJ', # '\u0133': 'ij', # '\u1D6B': 'ue', _ligpat = re.compile('|'.join(LIGATURES)) def sanitize_head(match): x = match.group(1) x = _span_pat.sub('', x) return '\n%s\n' % x def chap_head(match): chap = match.group('chap') title = match.group('title') if not title: return '

'+chap+'


\n' else: return '

'+chap+'

\n

'+title+'

\n' def wrap_lines(match): ital = match.group('ital') if not ital: return ' ' else: return ital+' ' def smarten_punctuation(html, log=None): from ebook_converter.utils.smartypants import smartyPants from ebook_converter.ebooks.chardet import substitute_entites from ebook_converter.ebooks.conversion.utils import HeuristicProcessor preprocessor = HeuristicProcessor(log=log) from uuid import uuid4 start = 'calibre-smartypants-'+str(uuid4()) stop = 'calibre-smartypants-'+str(uuid4()) html = html.replace('', stop) html = preprocessor.fix_nbsp_indents(html) html = smartyPants(html) html = html.replace(start, '') return substitute_entites(html) class DocAnalysis(object): """ Provides various text analysis functions to determine how the document is structured. format is the type of document analysis will be done against. raw is the raw text to determine the line length to use for wrapping. Blank lines are excluded from analysis """ def __init__(self, format='html', raw=''): raw = raw.replace(' ', ' ') if format == 'html': linere = re.compile(r'(?<=]*>\s*

).*?(?=

)', re.DOTALL) elif format == 'pdf': linere = re.compile(r'(?<=
)(?!\s*
).*?(?=
)', re.DOTALL) elif format == 'spanned_html': linere = re.compile('(?<=)', re.DOTALL) elif format == 'txt': linere = re.compile('.*?\n') self.lines = linere.findall(raw) def line_length(self, percent): """ Analyses the document to find the median line length. percentage is a decimal number, 0 - 1 which is used to determine how far in the list of line lengths to use. The list of line lengths is ordered smallest to largest and does not include duplicates. 0.5 is the median value. """ lengths = [] for line in self.lines: if len(line) > 0: lengths.append(len(line)) if not lengths: return 0 lengths = list(set(lengths)) total = sum(lengths) avg = total / len(lengths) max_line = math.ceil(avg * 2) lengths = sorted(lengths) for i in range(len(lengths) - 1, -1, -1): if lengths[i] > max_line: del lengths[i] if percent > 1: percent = 1 if percent < 0: percent = 0 index = int(len(lengths) * percent) - 1 return lengths[index] def line_histogram(self, percent): """ Creates a broad histogram of the document to determine whether it incorporates hard line breaks. Lines are sorted into 20 'buckets' based on length. percent is the percentage of lines that should be in a single bucket to return true The majority of the lines will exist in 1-2 buckets in typical docs with hard line breaks """ minLineLength = 20 # Ignore lines under 20 chars (typical of spaces) maxLineLength = 1900 # Discard larger than this to stay in range buckets = 20 # Each line is divided into a bucket based on length # print("there are "+str(len(lines))+" lines") # max = 0 # for line in self.lines: # _l = len(line) # if _l > max: # max = _l # print("max line found is "+str(max)) # Build the line length histogram hRaw = [0 for i in range(0, buckets)] for line in self.lines: _l = len(line) if _l > minLineLength and _l < maxLineLength: _l = int(_l // 100) # print("adding "+str(_l)) hRaw[_l] += 1 # Normalize the histogram into percents totalLines = len(self.lines) if totalLines > 0: h = [float(count)/totalLines for count in hRaw] else: h = [] # print("\nhRaw histogram lengths are: "+str(hRaw)) # print(" percents are: "+str(h)+"\n") # Find the biggest bucket maxValue = 0 for i in range(0, len(h)): if h[i] > maxValue: maxValue = h[i] if maxValue < percent: # print("Line lengths are too variable. Not unwrapping.") return False else: # print(str(maxValue)+" of the lines were in one bucket") return True class Dehyphenator(object): """ Analyzes words to determine whether hyphens should be retained/removed. Uses the document itself is as a dictionary. This method handles all languages along with uncommon, made-up, and scientific words. The primary disadvantage is that words appearing only once in the document retain hyphens. """ def __init__(self, verbose=0, log=None): self.log = log self.verbose = verbose # Add common suffixes to the regex below to increase the likelihood of # a match - don't add suffixes which are also complete words, such as # 'able' or 'sex' only remove if it's not already the point of # hyphenation self.suffix_string = ("((ed)?ly|'?e?s||a?(t|s)?ion(s|al(ly)?)?|ings?" "|er|(i)?ous|(i|a)ty|(it)?ies|ive|gence|" "istic(ally)?|(e|a)nce|m?ents?|ism|ated|" "(e|u)ct(ed)?|ed|(i|ed)?ness|(e|a)ncy|ble|ier" "|al|ex|ian)$") self.suffixes = re.compile(r"^%s" % self.suffix_string, re.IGNORECASE) self.removesuffixes = re.compile(r"%s" % self.suffix_string, re.IGNORECASE) # remove prefixes if the prefix was not already the point of # hyphenation self.prefix_string = '^(dis|re|un|in|ex)' self.prefixes = re.compile(r'%s$' % self.prefix_string, re.IGNORECASE) self.removeprefix = re.compile(r'%s' % self.prefix_string, re.IGNORECASE) def dehyphenate(self, match): firsthalf = match.group('firstpart') secondhalf = match.group('secondpart') try: wraptags = match.group('wraptags') except Exception: wraptags = '' hyphenated = str(firsthalf) + "-" + str(secondhalf) dehyphenated = str(firsthalf) + str(secondhalf) if self.suffixes.match(secondhalf) is None: lookupword = self.removesuffixes.sub('', dehyphenated) else: lookupword = dehyphenated if len(firsthalf) > 4 and self.prefixes.match(firsthalf) is None: lookupword = self.removeprefix.sub('', lookupword) if self.verbose > 2: self.log("lookup word is: "+lookupword+", orig is: " + hyphenated) try: searchresult = self.html.find(lookupword.lower()) except Exception: return hyphenated if self.format == 'html_cleanup' or self.format == 'txt_cleanup': if self.html.find(lookupword) != -1 or searchresult != -1: if self.verbose > 2: self.log(" Cleanup:returned dehyphenated word: " + dehyphenated) return dehyphenated elif self.html.find(hyphenated) != -1: if self.verbose > 2: self.log(" Cleanup:returned hyphenated word: " + hyphenated) return hyphenated else: if self.verbose > 2: self.log(" Cleanup:returning original text " + firsthalf + " + linefeed " + secondhalf) return firsthalf+'\u2014'+wraptags+secondhalf else: if (self.format == 'individual_words' and len(firsthalf) + len(secondhalf) <= 6): if self.verbose > 2: self.log("too short, returned hyphenated word: " + hyphenated) return hyphenated if len(firsthalf) <= 2 and len(secondhalf) <= 2: if self.verbose > 2: self.log("too short, returned hyphenated word: " + hyphenated) return hyphenated if self.html.find(lookupword) != -1 or searchresult != -1: if self.verbose > 2: self.log(" returned dehyphenated word: " + dehyphenated) return dehyphenated else: if self.verbose > 2: self.log(" returned hyphenated word: " + hyphenated) return hyphenated def __call__(self, html, format, length=1): self.html = html self.format = format if format == 'html': intextmatch = re.compile(r'(?<=.{%i})(?P[^\W\-]+)' r'(-|‐)\s*(?=<)(?P()?' r'\s*(\s*){1,2}' r'(?P<(p|div)[^>]*>\s*' r'(]*>\s*

\s*)?\s+)' r'{0,3}\s*(<[iubp][^>]*>\s*){1,2}' r'(]*>)?)\s*(?P' r'[\w\d]+)' % length) elif format == 'pdf': intextmatch = re.compile(r'(?<=.{%i})(?P[^\W\-]+)(-|‐)' r'\s*(?P

|\s*

\s*' r'<[iub]>)\s*(?P[\w\d]+)' % length) elif format == 'txt': intextmatch = re.compile('(?<=.{%i})(?P[^\\W\\-]+)(-|‐)' '(\u0020|\u0009)*(?P' '(\n(\u0020|\u0009)*)+)(?P' '[\\w\\d]+)' % length) elif format == 'individual_words': intextmatch = re.compile(r'(?!<)(?P[^\W\-]+)(-|‐)\s*' r'(?P\w+)(?![^<]*?>)', re.UNICODE) elif format == 'html_cleanup': intextmatch = re.compile(r'(?P[^\W\-]+)(-|‐)\s*(?=<)' r'(?P\s*(\s*' r'<[iubp][^>]*>\s*)?]*>|' r'\s*<[iubp][^>]*>)?\s*(?P' r'[\w\d]+)') elif format == 'txt_cleanup': intextmatch = re.compile(r'(?P[^\W\-]+)(-|‐)' r'(?P\s+)(?P' r'[\w\d]+)') html = intextmatch.sub(self.dehyphenate, html) return html class CSSPreProcessor(object): # Remove some of the broken CSS Microsoft products # create MS_PAT = re.compile(r''' (?P^|;|\{)\s* # The end of the previous rule or block start (%s).+? # The invalid selectors (?P$|;|\}) # The end of the declaration ''' % 'mso-|panose-|text-underline|tab-interval', re.MULTILINE | re.IGNORECASE | re.VERBOSE) def ms_sub(self, match): end = match.group('end') try: start = match.group('start') except Exception: start = '' if end == ';': end = '' return start + end def __call__(self, data, add_namespace=False): from ebook_converter.ebooks.oeb.base import XHTML_CSS_NAMESPACE data = self.MS_PAT.sub(self.ms_sub, data) if not add_namespace: return data # Remove comments as the following namespace logic will break if there # are commented lines before the first @import or @charset rule. Since # the conversion will remove all stylesheets anyway, we don't lose # anything data = re.sub(str(r'/\*.*?\*/'), '', data, flags=re.DOTALL) ans, namespaced = [], False for line in data.splitlines(): ll = line.lstrip() if not (namespaced or ll.startswith('@import') or not ll or ll.startswith('@charset')): ans.append(XHTML_CSS_NAMESPACE.strip()) namespaced = True ans.append(line) return '\n'.join(ans) def accent_regex(accent_maps, letter_before=False): accent_cat = set() letters = set() for accent in tuple(accent_maps): accent_cat.add(accent) k, v = accent_maps[accent].split(':', 1) if len(k) != len(v): raise ValueError('Invalid mapping for: {} -> {}'.format(k, v)) accent_maps[accent] = lmap = dict(zip(k, v)) letters |= set(lmap) if letter_before: args = ''.join(letters), ''.join(accent_cat) accent_group, letter_group = 2, 1 else: args = ''.join(accent_cat), ''.join(letters) accent_group, letter_group = 1, 2 pat = re.compile(r'([{}])\s*(?:]*>){{0,1}}\s*([{}])'.format(*args), re.UNICODE) def sub(m): lmap = accent_maps[m.group(accent_group)] return lmap.get(m.group(letter_group)) or m.group() return pat, sub def html_preprocess_rules(): ans = getattr(html_preprocess_rules, 'ans', None) if ans is None: ans = [ # Remove huge block of contiguous spaces as they slow down # the following regexes pretty badly (re.compile(r'\s{10000,}'), ''), # Some idiotic HTML generators (Frontpage I'm looking at you) # Put all sorts of crap into . This messes up lxml (re.compile(r']*>\n*(.*?)\n*', re.IGNORECASE | re.DOTALL), sanitize_head), # Convert all entities, since lxml doesn't handle them well (re.compile(r'&(\S+?);'), convert_entities), # Remove the ', re.IGNORECASE), '')] html_preprocess_rules.ans = ans return ans def pdftohtml_rules(): ans = getattr(pdftohtml_rules, 'ans', None) if ans is None: ans = [accent_regex({'¨': 'aAeEiIoOuU:äÄëËïÏöÖüÜ', '`': 'aAeEiIoOuU:àÀèÈìÌòÒùÙ', '´': 'aAcCeEiIlLoOnNrRsSuUzZ:áÁćĆéÉíÍĺĹóÓńŃŕŔśŚ' 'úÚźŹ', 'ˆ': 'aAeEiIoOuU:âÂêÊîÎôÔûÛ', '¸': 'cC:çÇ', '˛': 'aAeE:ąĄęĘ', '˙': 'zZ:żŻ', 'ˇ': 'cCdDeElLnNrRsStTzZ:čČďĎěĚľĽňŇřŘšŠťŤžŽ', '°': 'uU:ůŮ'}), accent_regex({'`': 'aAeEiIoOuU:àÀèÈìÌòÒùÙ'}, letter_before=True), # If pdf printed from a browser then the header/footer has a # reliable pattern (re.compile(r'((?<=)\s*file:/{2,4}[A-Z].*
|file:////?' r'[A-Z].*
(?=\s*


))', re.IGNORECASE), lambda match: ''), # Center separator lines (re.compile(r'
\s*(?P([*#•✦=] *){3,})\s*
'), lambda match: '

\n

' + match.group('break') + '

'), # Remove
tags (re.compile(r'', re.IGNORECASE), ''), # Remove gray background (re.compile(r']+>'), ''), # Convert line breaks to paragraphs (re.compile(r']*>\s*'), '

\n

'), (re.compile(r']*>\s*'), '\n

'), (re.compile(r'\s*'), '

\n'), # Clean up spaces (re.compile(r'(?<=[\.,;\?!”"\'])[\s^ ]*(?=<)'), ' '), # Add space before and after italics (re.compile(r'(?'), ' '), (re.compile(r'(?=\w)'), ' ')] pdftohtml_rules.ans = ans return ans def book_designer_rules(): ans = getattr(book_designer_rules, 'ans', None) if ans is None: ans = [(re.compile('
', re.IGNORECASE), lambda match: ' ' ''), # Create header tags (re.compile(r'<]*?id=BookTitle[^><]*?(align=)*(?(1)' r'(\w+))*[^><]*?>[^><]*?', re.IGNORECASE), lambda match: '

%s

' % (match.group(2) if match.group(2) else 'center', match.group(3))), (re.compile(r'<]*?id=BookAuthor[^><]*?(align=)*(?(1)' r'(\w+))*[^><]*?>[^><]*?', re.IGNORECASE), lambda match: '

%s

' % (match.group(2) if match.group(2) else 'center', match.group(3))), (re.compile('<]*?id=title[^><]*?>(.*?)', re.IGNORECASE | re.DOTALL), lambda match: '

%s

' % (match.group(1),)), (re.compile('<]*?id=subtitle[^><]*?>(.*?)', re.IGNORECASE | re.DOTALL), lambda match: '

%s

' % (match.group(1),))] book_designer_rules.ans = ans return None class HTMLPreProcessor(object): def __init__(self, log=None, extra_opts=None, regex_wizard_callback=None): self.log = log self.extra_opts = extra_opts self.regex_wizard_callback = regex_wizard_callback self.current_href = None def is_baen(self, src): return re.compile(r'<]*id=BookTitle', raw) is not None def is_pdftohtml(self, src): return '' in src[:1000] def __call__(self, html, remove_special_chars=None, get_preprocess_html=False): if remove_special_chars is not None: html = remove_special_chars.sub('', html) html = html.replace('\0', '') is_pdftohtml = self.is_pdftohtml(html) if self.is_baen(html): rules = [] elif self.is_book_designer(html): rules = book_designer_rules() elif is_pdftohtml: rules = pdftohtml_rules() else: rules = [] start_rules = [] if not getattr(self.extra_opts, 'keep_ligatures', False): html = _ligpat.sub(lambda m: LIGATURES[m.group()], html) user_sr_rules = {} # Function for processing search and replace def do_search_replace(search_pattern, replace_txt): from ebook_converter.ebooks.conversion.search_replace import \ compile_regular_expression try: search_re = compile_regular_expression(search_pattern) if not replace_txt: replace_txt = '' rules.insert(0, (search_re, replace_txt)) user_sr_rules[(search_re, replace_txt)] = search_pattern except Exception as e: self.log.error('Failed to parse %r regexp because %s' % (search, e)) # search / replace using the sr?_search / sr?_replace options for i in range(1, 4): search, replace = 'sr%d_search' % i, 'sr%d_replace' % i search_pattern = getattr(self.extra_opts, search, '') replace_txt = getattr(self.extra_opts, replace, '') if search_pattern: do_search_replace(search_pattern, replace_txt) # multi-search / replace using the search_replace option search_replace = getattr(self.extra_opts, 'search_replace', None) if search_replace: search_replace = json.loads(search_replace) for search_pattern, replace_txt in reversed(search_replace): do_search_replace(search_pattern, replace_txt) end_rules = [] # delete soft hyphens - moved here so it's executed after # header/footer removal if is_pdftohtml: # unwrap/delete soft hyphens end_rules.append((re.compile(r'[­](

\s*

\s*)+\s*' r'(?=[\[a-z\d])'), lambda match: '')) # unwrap/delete soft hyphens with formatting end_rules.append((re.compile(r'[­]\s*()+(

\s*

\s*)+' r'\s*(<(i|u|b)>)+\s*(?=[\[a-z\d])'), lambda match: '')) length = -1 if getattr(self.extra_opts, 'unwrap_factor', 0.0) > 0.01: docanalysis = DocAnalysis('pdf', html) length = docanalysis.line_length(getattr(self.extra_opts, 'unwrap_factor')) if length: # print("The pdf line length returned is " + str(length)) # unwrap em/en dashes end_rules.append((re.compile(r'(?<=.{%i}[–—])\s*

\s*' r'(?=[\[a-z\d])' % length), lambda match: '')) end_rules.append( # Un wrap using punctuation (re.compile((r'(?<=.{%i}([a-zäëïöüàèìòùáćéíĺóŕńśúýâêîôûçą' r'ężıãõñæøþðßěľščťžňďřů,:)\\IAß]|(?)?\s*(

\s*' r'

\s*)+\s*(?=(<(i|b|u)>)?\s*[\w\d$(])') % length, re.UNICODE), wrap_lines)) for rule in html_preprocess_rules() + start_rules: html = rule[0].sub(rule[1], html) if self.regex_wizard_callback is not None: self.regex_wizard_callback(self.current_href, html) if get_preprocess_html: return html def dump(raw, where): import os dp = getattr(self.extra_opts, 'debug_pipeline', None) if dp and os.path.exists(dp): odir = os.path.join(dp, 'input') if os.path.exists(odir): odir = os.path.join(odir, where) if not os.path.exists(odir): os.makedirs(odir) name, i = None, 0 while not name or os.path.exists(os.path.join(odir, name)): i += 1 name = '%04d.html' % i with open(os.path.join(odir, name), 'wb') as f: f.write(raw.encode('utf-8')) # dump(html, 'pre-preprocess') for rule in rules + end_rules: try: html = rule[0].sub(rule[1], html) except Exception as e: if rule in user_sr_rules: self.log.error('User supplied search & replace rule: %s ' '-> %s failed with error: %s, ignoring.' % (user_sr_rules[rule], rule[1], e)) else: raise if is_pdftohtml and length > -1: # Dehyphenate dehyphenator = Dehyphenator(self.extra_opts.verbose, self.log) html = dehyphenator(html, 'html', length) if is_pdftohtml: from ebook_converter.ebooks.conversion.utils import \ HeuristicProcessor pdf_markup = HeuristicProcessor(self.extra_opts, None) totalwords = 0 if pdf_markup.get_word_count(html) > 7000: html = pdf_markup.markup_chapters(html, totalwords, True) # dump(html, 'post-preprocess') # Handle broken XHTML w/ SVG (ugh) if 'svg:' in html and SVG_NS not in html: html = html.replace( '', '') if getattr(self.extra_opts, 'smarten_punctuation', False): html = smarten_punctuation(html, self.log) try: unsupported_unicode_chars = (self.extra_opts.output_profile .unsupported_unicode_chars) except AttributeError: unsupported_unicode_chars = '' if unsupported_unicode_chars: from ebook_converter.utils.localization import get_udc unihandecoder = get_udc() for char in unsupported_unicode_chars: asciichar = unihandecoder.decode(char) html = html.replace(char, asciichar) return html