/* scale.c - image scaling * * Raster graphics library * * Copyright (c) 1997-2003 Alfredo K. Kojima * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the Free * Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, * MA 02110-1301, USA. */ #include #include #include #include #include #include #ifndef PI #define PI 3.14159265358979323846 #endif #include #include "wraster.h" /* *---------------------------------------------------------------------- * RScaleImage-- * Creates a scaled copy of an image. * * Returns: * The new scaled image. * *---------------------------------------------------------------------- */ RImage *RScaleImage(RImage * image, unsigned new_width, unsigned new_height) { int ox; int px, py; register int x, y, t; int dx, dy; unsigned char *s; unsigned char *d; RImage *img; if (new_width == image->width && new_height == image->height) return RCloneImage(image); img = RCreateImage(new_width, new_height, image->format == RRGBAFormat); if (!img) return NULL; /* fixed point math idea taken from Imlib by * Carsten Haitzler (Rasterman) */ dx = (image->width << 16) / new_width; dy = (image->height << 16) / new_height; py = 0; d = img->data; if (image->format == RRGBAFormat) { for (y = 0; y < new_height; y++) { t = image->width * (py >> 16); s = image->data + (t << 2); /* image->data+t*4 */ ox = 0; px = 0; for (x = 0; x < new_width; x++) { px += dx; *(d++) = *(s); *(d++) = *(s + 1); *(d++) = *(s + 2); *(d++) = *(s + 3); t = (px - ox) >> 16; ox += t << 16; s += t << 2; /* t*4 */ } py += dy; } } else { for (y = 0; y < new_height; y++) { t = image->width * (py >> 16); s = image->data + (t << 1) + t; /* image->data+t*3 */ ox = 0; px = 0; for (x = 0; x < new_width; x++) { px += dx; *(d++) = *(s); *(d++) = *(s + 1); *(d++) = *(s + 2); t = (px - ox) >> 16; ox += t << 16; s += (t << 1) + t; /* t*3 */ } py += dy; } } return img; } /* * Filtered Image Rescaling code copy/pasted from * Graphics Gems III * Public Domain 1991 by Dale Schumacher */ /* * filter function definitions */ #define box_support (0.5) static double box_filter(double t) { if ((t > -0.5) && (t <= 0.5)) return (1.0); return (0.0); } #define triangle_support (1.0) static double triangle_filter(double t) { if (t < 0.0) t = -t; if (t < 1.0) return (1.0 - t); return (0.0); } #define bell_support (1.5) static double bell_filter(double t) /* box (*) box (*) box */ { if (t < 0) t = -t; if (t < .5) return (.75 - (t * t)); if (t < 1.5) { t = (t - 1.5); return (.5 * (t * t)); } return (0.0); } #define B_spline_support (2.0) static double B_spline_filter(double t) /* box (*) box (*) box (*) box */ { double tt; if (t < 0) t = -t; if (t < 1) { tt = t * t; return ((.5 * tt * t) - tt + (2.0 / 3.0)); } else if (t < 2) { t = 2 - t; return ((1.0 / 6.0) * (t * t * t)); } return (0.0); } static double sinc(double x) { x *= PI; if (x != 0) return (sin(x) / x); return (1.0); } #define Lanczos3_support (3.0) static double Lanczos3_filter(double t) { if (t < 0) t = -t; if (t < 3.0) return (sinc(t) * sinc(t / 3.0)); return (0.0); } #define Mitchell_support (2.0) #define B (1.0 / 3.0) #define C (1.0 / 3.0) static double Mitchell_filter(double t) { double tt; tt = t * t; if (t < 0) t = -t; if (t < 1.0) { t = (((12.0 - 9.0 * B - 6.0 * C) * (t * tt)) + ((-18.0 + 12.0 * B + 6.0 * C) * tt) + (6.0 - 2 * B)); return (t / 6.0); } else if (t < 2.0) { t = (((-1.0 * B - 6.0 * C) * (t * tt)) + ((6.0 * B + 30.0 * C) * tt) + ((-12.0 * B - 48.0 * C) * t) + (8.0 * B + 24 * C)); return (t / 6.0); } return (0.0); } static double (*filterf)(double) = Mitchell_filter; static double fwidth = Mitchell_support; void _wraster_change_filter(int type) { switch (type) { case RBoxFilter: filterf = box_filter; fwidth = box_support; break; case RTriangleFilter: filterf = triangle_filter; fwidth = triangle_support; break; case RBellFilter: filterf = bell_filter; fwidth = bell_support; break; case RBSplineFilter: filterf = B_spline_filter; fwidth = B_spline_support; break; case RLanczos3Filter: filterf = Lanczos3_filter; fwidth = Lanczos3_support; break; default: case RMitchellFilter: filterf = Mitchell_filter; fwidth = Mitchell_support; break; } } /* * image rescaling routine */ typedef struct { int pixel; double weight; } CONTRIB; typedef struct { int n; /* number of contributors */ CONTRIB *p; /* pointer to list of contributions */ } CLIST; /* clamp the input to the specified range */ #define CLAMP(v,l,h) ((v)<(l) ? (l) : (v) > (h) ? (h) : v) /* return of calloc is not checked if NULL in the function below! */ RImage *RSmoothScaleImage(RImage * src, unsigned new_width, unsigned new_height) { CLIST *contrib; /* array of contribution lists */ RImage *tmp; /* intermediate image */ double xscale, yscale; /* zoom scale factors */ int i, j, k; /* loop variables */ int n; /* pixel number */ double center, left, right; /* filter calculation variables */ double width, fscale; /* filter calculation variables */ double rweight, gweight, bweight; RImage *dst; unsigned char *p; unsigned char *sp; int sch = src->format == RRGBAFormat ? 4 : 3; dst = RCreateImage(new_width, new_height, False); /* create intermediate image to hold horizontal zoom */ tmp = RCreateImage(dst->width, src->height, False); xscale = (double)new_width / (double)src->width; yscale = (double)new_height / (double)src->height; /* pre-calculate filter contributions for a row */ contrib = (CLIST *) calloc(new_width, sizeof(CLIST)); if (xscale < 1.0) { width = fwidth / xscale; fscale = 1.0 / xscale; for (i = 0; i < new_width; ++i) { contrib[i].n = 0; contrib[i].p = (CONTRIB *) calloc((int) ceil(width * 2 + 1), sizeof(CONTRIB)); center = (double)i / xscale; left = ceil(center - width); right = floor(center + width); for (j = left; j <= right; ++j) { rweight = center - (double)j; rweight = (*filterf) (rweight / fscale) / fscale; if (j < 0) { n = -j; } else if (j >= src->width) { n = (src->width - j) + src->width - 1; } else { n = j; } k = contrib[i].n++; contrib[i].p[k].pixel = n * sch; contrib[i].p[k].weight = rweight; } } } else { for (i = 0; i < new_width; ++i) { contrib[i].n = 0; contrib[i].p = (CONTRIB *) calloc((int) ceil(fwidth * 2 + 1), sizeof(CONTRIB)); center = (double)i / xscale; left = ceil(center - fwidth); right = floor(center + fwidth); for (j = left; j <= right; ++j) { rweight = center - (double)j; rweight = (*filterf) (rweight); if (j < 0) { n = -j; } else if (j >= src->width) { n = (src->width - j) + src->width - 1; } else { n = j; } k = contrib[i].n++; contrib[i].p[k].pixel = n * sch; contrib[i].p[k].weight = rweight; } } } /* apply filter to zoom horizontally from src to tmp */ p = tmp->data; for (k = 0; k < tmp->height; ++k) { CONTRIB *pp; sp = src->data + src->width * k * sch; for (i = 0; i < tmp->width; ++i) { rweight = gweight = bweight = 0.0; pp = contrib[i].p; for (j = 0; j < contrib[i].n; ++j) { rweight += sp[pp[j].pixel] * pp[j].weight; gweight += sp[pp[j].pixel + 1] * pp[j].weight; bweight += sp[pp[j].pixel + 2] * pp[j].weight; } *p++ = CLAMP(rweight, 0, 255); *p++ = CLAMP(gweight, 0, 255); *p++ = CLAMP(bweight, 0, 255); } } /* free the memory allocated for horizontal filter weights */ for (i = 0; i < new_width; ++i) { free(contrib[i].p); } free(contrib); /* pre-calculate filter contributions for a column */ contrib = (CLIST *) calloc(dst->height, sizeof(CLIST)); if (yscale < 1.0) { width = fwidth / yscale; fscale = 1.0 / yscale; for (i = 0; i < dst->height; ++i) { contrib[i].n = 0; contrib[i].p = (CONTRIB *) calloc((int) ceil(width * 2 + 1), sizeof(CONTRIB)); center = (double)i / yscale; left = ceil(center - width); right = floor(center + width); for (j = left; j <= right; ++j) { rweight = center - (double)j; rweight = (*filterf) (rweight / fscale) / fscale; if (j < 0) { n = -j; } else if (j >= tmp->height) { n = (tmp->height - j) + tmp->height - 1; } else { n = j; } k = contrib[i].n++; contrib[i].p[k].pixel = n * 3; contrib[i].p[k].weight = rweight; } } } else { for (i = 0; i < dst->height; ++i) { contrib[i].n = 0; contrib[i].p = (CONTRIB *) calloc((int) ceil(fwidth * 2 + 1), sizeof(CONTRIB)); center = (double)i / yscale; left = ceil(center - fwidth); right = floor(center + fwidth); for (j = left; j <= right; ++j) { rweight = center - (double)j; rweight = (*filterf) (rweight); if (j < 0) { n = -j; } else if (j >= tmp->height) { n = (tmp->height - j) + tmp->height - 1; } else { n = j; } k = contrib[i].n++; contrib[i].p[k].pixel = n * 3; contrib[i].p[k].weight = rweight; } } } /* apply filter to zoom vertically from tmp to dst */ sp = malloc(tmp->height * 3); for (k = 0; k < new_width; ++k) { CONTRIB *pp; p = dst->data + k * 3; /* copy a column into a row */ { int i; unsigned char *p, *d; d = sp; for (i = tmp->height, p = tmp->data + k * 3; i-- > 0; p += tmp->width * 3) { *d++ = *p; *d++ = *(p + 1); *d++ = *(p + 2); } } for (i = 0; i < new_height; ++i) { rweight = gweight = bweight = 0.0; pp = contrib[i].p; for (j = 0; j < contrib[i].n; ++j) { rweight += sp[pp[j].pixel] * pp[j].weight; gweight += sp[pp[j].pixel + 1] * pp[j].weight; bweight += sp[pp[j].pixel + 2] * pp[j].weight; } *p = CLAMP(rweight, 0, 255); *(p + 1) = CLAMP(gweight, 0, 255); *(p + 2) = CLAMP(bweight, 0, 255); p += new_width * 3; } } free(sp); /* free the memory allocated for vertical filter weights */ for (i = 0; i < dst->height; ++i) { free(contrib[i].p); } free(contrib); RReleaseImage(tmp); return dst; }