1
0
mirror of https://github.com/gryf/wmaker.git synced 2025-12-18 20:10:29 +01:00
Files
wmaker/wrlib/context.c
Christophe CURIS b64d9e6be0 wrlib: changed Gamma Correction calculation to use single-precision float
The original code was using double precision floating point to perform the
color corrections for the creation of the standard colormap. This precision
is not necessary because color coding is 16 bits anyway, and on some
architecture the double precision comes with a cost.

Signed-off-by: Christophe CURIS <christophe.curis@free.fr>
2015-05-24 23:25:57 +01:00

707 lines
18 KiB
C

/* context.c - X context management
*
* Raster graphics library
*
* Copyright (c) 1997-2003 Alfredo K. Kojima
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the Free
* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
* MA 02110-1301, USA.
*/
#include <config.h>
#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <X11/Xatom.h>
#include <X11/Xmu/StdCmap.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <math.h>
#include "wraster.h"
#include "scale.h"
#ifndef HAVE_FLOAT_MATHFUNC
#define powf(x, y) ((float) pow((double)(x), (double)(y)))
#endif
static Bool bestContext(Display * dpy, int screen_number, RContext * context);
static const RContextAttributes DEFAULT_CONTEXT_ATTRIBS = {
RC_UseSharedMemory | RC_RenderMode | RC_ColorsPerChannel, /* flags */
RDitheredRendering, /* render_mode */
4, /* colors_per_channel */
0,
0,
0,
0,
True, /* use_shared_memory */
RMitchellFilter,
RUseStdColormap
};
/*
*
* Colormap allocation for PseudoColor visuals:
*
*
* switch standardColormap:
* none:
* allocate colors according to colors_per_channel
*
* best/default:
* if there's a std colormap defined then use it
*
* else
* create a std colormap and set it
*/
/*
*----------------------------------------------------------------------
* allocateStandardPseudoColor
* Creates the internal colormap for PseudoColor, setting the
* color values according to the supplied standard colormap.
*
* Returns: -
*
* Side effects: -
*
* Notes: -
*----------------------------------------------------------------------
*/
static Bool allocateStandardPseudoColor(RContext * ctx, XStandardColormap * stdcmap)
{
int i;
ctx->ncolors = stdcmap->red_max * stdcmap->red_mult
+ stdcmap->green_max * stdcmap->green_mult + stdcmap->blue_max * stdcmap->blue_mult + 1;
if (ctx->ncolors <= 1) {
RErrorCode = RERR_INTERNAL;
puts("wraster: bad standard colormap");
return False;
}
ctx->colors = malloc(sizeof(XColor) * ctx->ncolors);
if (!ctx->colors) {
RErrorCode = RERR_NOMEMORY;
return False;
}
ctx->pixels = malloc(sizeof(unsigned long) * ctx->ncolors);
if (!ctx->pixels) {
free(ctx->colors);
ctx->colors = NULL;
RErrorCode = RERR_NOMEMORY;
return False;
}
#define calc(max,mult) (((i / stdcmap->mult) % \
(stdcmap->max + 1)) * 65535) / stdcmap->max
for (i = 0; i < ctx->ncolors; i++) {
ctx->colors[i].pixel = i + stdcmap->base_pixel;
ctx->colors[i].red = calc(red_max, red_mult);
ctx->colors[i].green = calc(green_max, green_mult);
ctx->colors[i].blue = calc(blue_max, blue_mult);
ctx->pixels[i] = ctx->colors[i].pixel;
}
#undef calc
return True;
}
static Bool setupStandardColormap(RContext * ctx, Atom property)
{
if (!XmuLookupStandardColormap(ctx->dpy, ctx->screen_number,
ctx->visual->visualid, ctx->depth, property, True, True)) {
RErrorCode = RERR_STDCMAPFAIL;
return False;
}
return True;
}
static XColor *allocateColor(RContext *ctx, XColor *colors, int ncolors)
{
XColor avcolors[256];
int avncolors;
int i, r, g, b;
int retries;
for (i = 0; i < ncolors; i++) {
#ifdef WRLIB_DEBUG
fprintf(stderr, "trying:%x,%x,%x\n", colors[i].red, colors[i].green, colors[i].blue);
#endif
if (!XAllocColor(ctx->dpy, ctx->cmap, &(colors[i]))) {
colors[i].flags = 0; /* failed */
#ifdef WRLIB_DEBUG
fprintf(stderr, "failed:%x,%x,%x\n", colors[i].red, colors[i].green, colors[i].blue);
#endif
} else {
colors[i].flags = DoRed | DoGreen | DoBlue;
#ifdef WRLIB_DEBUG
fprintf(stderr, "success:%x,%x,%x\n", colors[i].red, colors[i].green, colors[i].blue);
#endif
}
}
/* try to allocate close values for the colors that couldn't
* be allocated before */
avncolors = (1 << ctx->depth > 256 ? 256 : 1 << ctx->depth);
for (i = 0; i < avncolors; i++)
avcolors[i].pixel = i;
XQueryColors(ctx->dpy, ctx->cmap, avcolors, avncolors);
for (i = 0; i < ncolors; i++) {
if (colors[i].flags == 0) {
int j;
unsigned long cdiff = 0xffffffff, diff;
unsigned long closest = 0;
retries = 2;
while (retries--) {
/* find closest color */
for (j = 0; j < avncolors; j++) {
r = (colors[i].red - avcolors[i].red) >> 8;
g = (colors[i].green - avcolors[i].green) >> 8;
b = (colors[i].blue - avcolors[i].blue) >> 8;
diff = r * r + g * g + b * b;
if (diff < cdiff) {
cdiff = diff;
closest = j;
}
}
/* allocate closest color found */
#ifdef WRLIB_DEBUG
fprintf(stderr, "best match:%x,%x,%x => %x,%x,%x\n",
colors[i].red, colors[i].green, colors[i].blue,
avcolors[closest].red, avcolors[closest].green, avcolors[closest].blue);
#endif
colors[i].red = avcolors[closest].red;
colors[i].green = avcolors[closest].green;
colors[i].blue = avcolors[closest].blue;
if (XAllocColor(ctx->dpy, ctx->cmap, &colors[i])) {
colors[i].flags = DoRed | DoGreen | DoBlue;
break; /* succeeded, don't need to retry */
}
#ifdef WRLIB_DEBUG
fputs("close color allocation failed. Retrying...\n", stderr);
#endif
}
}
}
return colors;
}
static Bool allocatePseudoColor(RContext *ctx)
{
XColor *colors;
int i, ncolors, r, g, b;
int cpc = ctx->attribs->colors_per_channel;
ncolors = cpc * cpc * cpc;
if (ncolors > (1 << ctx->depth)) {
/* reduce colormap size */
cpc = ctx->attribs->colors_per_channel = 1 << ((int)ctx->depth / 3);
ncolors = cpc * cpc * cpc;
}
assert(cpc >= 2 && ncolors <= (1 << ctx->depth));
colors = malloc(sizeof(XColor) * ncolors);
if (!colors) {
RErrorCode = RERR_NOMEMORY;
return False;
}
ctx->pixels = malloc(sizeof(unsigned long) * ncolors);
if (!ctx->pixels) {
free(colors);
RErrorCode = RERR_NOMEMORY;
return False;
}
i = 0;
if ((ctx->attribs->flags & RC_GammaCorrection) && ctx->attribs->rgamma > 0
&& ctx->attribs->ggamma > 0 && ctx->attribs->bgamma > 0) {
float rg, gg, bg;
float tmp;
/* do gamma correction */
rg = 1.0F / ctx->attribs->rgamma;
gg = 1.0F / ctx->attribs->ggamma;
bg = 1.0F / ctx->attribs->bgamma;
for (r = 0; r < cpc; r++) {
for (g = 0; g < cpc; g++) {
for (b = 0; b < cpc; b++) {
colors[i].red = (r * 0xffff) / (cpc - 1);
colors[i].green = (g * 0xffff) / (cpc - 1);
colors[i].blue = (b * 0xffff) / (cpc - 1);
colors[i].flags = DoRed | DoGreen | DoBlue;
tmp = (float) colors[i].red / 65536.0F;
colors[i].red = (unsigned short)(65536.0F * powf(tmp, rg));
tmp = (float) colors[i].green / 65536.0F;
colors[i].green = (unsigned short)(65536.0F * powf(tmp, gg));
tmp = (float) colors[i].blue / 65536.0F;
colors[i].blue = (unsigned short)(65536.0F * powf(tmp, bg));
i++;
}
}
}
} else {
for (r = 0; r < cpc; r++) {
for (g = 0; g < cpc; g++) {
for (b = 0; b < cpc; b++) {
colors[i].red = (r * 0xffff) / (cpc - 1);
colors[i].green = (g * 0xffff) / (cpc - 1);
colors[i].blue = (b * 0xffff) / (cpc - 1);
colors[i].flags = DoRed | DoGreen | DoBlue;
i++;
}
}
}
}
/* try to allocate the colors */
ctx->colors = allocateColor(ctx, colors, ncolors);
ctx->ncolors = ncolors;
/* fill the pixels shortcut array */
for (i = 0; i < ncolors; i++) {
ctx->pixels[i] = ctx->colors[i].pixel;
}
return True;
}
static XColor *allocateGrayScale(RContext * ctx)
{
XColor *colors;
int i, ncolors;
int cpc = ctx->attribs->colors_per_channel;
ncolors = cpc * cpc * cpc;
if (ctx->vclass == StaticGray) {
/* we might as well use all grays */
ncolors = 1 << ctx->depth;
} else {
if (ncolors > (1 << ctx->depth)) {
/* reduce colormap size */
cpc = ctx->attribs->colors_per_channel = 1 << ((int)ctx->depth / 3);
ncolors = cpc * cpc * cpc;
}
assert(cpc >= 2 && ncolors <= (1 << ctx->depth));
}
if (ncolors >= 256 && ctx->vclass == StaticGray) {
/* don't need dithering for 256 levels of gray in StaticGray visual */
ctx->attribs->render_mode = RBestMatchRendering;
}
colors = malloc(sizeof(XColor) * ncolors);
if (!colors) {
RErrorCode = RERR_NOMEMORY;
return False;
}
for (i = 0; i < ncolors; i++) {
colors[i].red = (i * 0xffff) / (ncolors - 1);
colors[i].green = (i * 0xffff) / (ncolors - 1);
colors[i].blue = (i * 0xffff) / (ncolors - 1);
colors[i].flags = DoRed | DoGreen | DoBlue;
}
/* try to allocate the colors */
return allocateColor(ctx, colors, ncolors);
}
static Bool setupPseudoColorColormap(RContext * context)
{
Atom property = 0;
if (context->attribs->standard_colormap_mode == RCreateStdColormap) {
property = XInternAtom(context->dpy, "RGB_DEFAULT_MAP", False);
if (!setupStandardColormap(context, property)) {
return False;
}
}
if (context->attribs->standard_colormap_mode != RIgnoreStdColormap) {
XStandardColormap *maps;
int count, i;
if (!property) {
property = XInternAtom(context->dpy, "RGB_BEST_MAP", False);
if (!XGetRGBColormaps(context->dpy,
DefaultRootWindow(context->dpy), &maps, &count, property)) {
maps = NULL;
}
if (!maps) {
property = XInternAtom(context->dpy, "RGB_DEFAULT_MAP", False);
if (!XGetRGBColormaps(context->dpy,
DefaultRootWindow(context->dpy), &maps, &count, property)) {
maps = NULL;
}
}
} else {
if (!XGetRGBColormaps(context->dpy,
DefaultRootWindow(context->dpy), &maps, &count, property)) {
maps = NULL;
}
}
if (maps) {
int theMap = -1;
for (i = 0; i < count; i++) {
if (maps[i].visualid == context->visual->visualid) {
theMap = i;
break;
}
}
if (theMap < 0) {
puts("wrlib: no std cmap found");
}
if (theMap >= 0 && allocateStandardPseudoColor(context, &maps[theMap])) {
context->std_rgb_map = XAllocStandardColormap();
*context->std_rgb_map = maps[theMap];
context->cmap = context->std_rgb_map->colormap;
XFree(maps);
return True;
}
XFree(maps);
}
}
context->attribs->standard_colormap_mode = RIgnoreStdColormap;
/* RIgnoreStdColormap and fallback */
return allocatePseudoColor(context);
}
static char *mygetenv(const char *var, int scr)
{
char *p;
char varname[64];
snprintf(varname, sizeof(varname), "%s%i", var, scr);
p = getenv(varname);
if (!p) {
p = getenv(var);
}
return p;
}
static void gatherconfig(RContext * context, int screen_n)
{
char *ptr;
ptr = mygetenv("WRASTER_GAMMA", screen_n);
if (ptr) {
float g1, g2, g3;
if (sscanf(ptr, "%f/%f/%f", &g1, &g2, &g3) != 3 || g1 <= 0.0F || g2 <= 0.0F || g3 <= 0.0F) {
printf("wrlib: invalid value(s) for gamma correction \"%s\"\n", ptr);
} else {
context->attribs->flags |= RC_GammaCorrection;
context->attribs->rgamma = g1;
context->attribs->ggamma = g2;
context->attribs->bgamma = g3;
}
}
ptr = mygetenv("WRASTER_COLOR_RESOLUTION", screen_n);
if (ptr) {
int i;
if (sscanf(ptr, "%d", &i) != 1 || i < 2 || i > 6) {
printf("wrlib: invalid value for color resolution \"%s\"\n", ptr);
} else {
context->attribs->flags |= RC_ColorsPerChannel;
context->attribs->colors_per_channel = i;
}
}
}
static void getColormap(RContext * context, int screen_number)
{
Colormap cmap = None;
XStandardColormap *cmaps;
int ncmaps, i;
if (XGetRGBColormaps(context->dpy,
RootWindow(context->dpy, screen_number), &cmaps, &ncmaps, XA_RGB_DEFAULT_MAP)) {
for (i = 0; i < ncmaps; ++i) {
if (cmaps[i].visualid == context->visual->visualid) {
cmap = cmaps[i].colormap;
break;
}
}
XFree(cmaps);
}
if (cmap == None) {
XColor color;
cmap = XCreateColormap(context->dpy,
RootWindow(context->dpy, screen_number), context->visual, AllocNone);
color.red = color.green = color.blue = 0;
XAllocColor(context->dpy, cmap, &color);
context->black = color.pixel;
color.red = color.green = color.blue = 0xffff;
XAllocColor(context->dpy, cmap, &color);
context->white = color.pixel;
}
context->cmap = cmap;
}
static int count_offset(unsigned long mask)
{
int i;
i = 0;
while ((mask & 1) == 0) {
i++;
mask = mask >> 1;
}
return i;
}
RContext *RCreateContext(Display * dpy, int screen_number, const RContextAttributes * attribs)
{
RContext *context;
XGCValues gcv;
context = malloc(sizeof(RContext));
if (!context) {
RErrorCode = RERR_NOMEMORY;
return NULL;
}
memset(context, 0, sizeof(RContext));
context->dpy = dpy;
context->screen_number = screen_number;
context->attribs = malloc(sizeof(RContextAttributes));
if (!context->attribs) {
free(context);
RErrorCode = RERR_NOMEMORY;
return NULL;
}
if (!attribs)
*context->attribs = DEFAULT_CONTEXT_ATTRIBS;
else
*context->attribs = *attribs;
if (!(context->attribs->flags & RC_StandardColormap)) {
context->attribs->standard_colormap_mode = RUseStdColormap;
}
if (!(context->attribs->flags & RC_ScalingFilter)) {
context->attribs->flags |= RC_ScalingFilter;
context->attribs->scaling_filter = RMitchellFilter;
}
/* get configuration from environment variables */
gatherconfig(context, screen_number);
wraster_change_filter(context->attribs->scaling_filter);
if ((context->attribs->flags & RC_VisualID)) {
XVisualInfo *vinfo, templ;
int nret;
templ.screen = screen_number;
templ.visualid = context->attribs->visualid;
vinfo = XGetVisualInfo(context->dpy, VisualIDMask | VisualScreenMask, &templ, &nret);
if (!vinfo || nret == 0) {
free(context);
RErrorCode = RERR_BADVISUALID;
return NULL;
}
if (vinfo[0].visual == DefaultVisual(dpy, screen_number)) {
context->attribs->flags |= RC_DefaultVisual;
} else {
XSetWindowAttributes attr;
unsigned long mask;
context->visual = vinfo[0].visual;
context->depth = vinfo[0].depth;
context->vclass = vinfo[0].class;
getColormap(context, screen_number);
attr.colormap = context->cmap;
attr.override_redirect = True;
attr.border_pixel = 0;
attr.background_pixel = 0;
mask = CWBorderPixel | CWColormap | CWOverrideRedirect | CWBackPixel;
context->drawable =
XCreateWindow(dpy, RootWindow(dpy, screen_number), 1, 1,
1, 1, 0, context->depth, CopyFromParent, context->visual, mask, &attr);
}
XFree(vinfo);
}
/* use default */
if (!context->visual) {
if ((context->attribs->flags & RC_DefaultVisual)
|| !bestContext(dpy, screen_number, context)) {
context->visual = DefaultVisual(dpy, screen_number);
context->depth = DefaultDepth(dpy, screen_number);
context->cmap = DefaultColormap(dpy, screen_number);
context->drawable = RootWindow(dpy, screen_number);
context->black = BlackPixel(dpy, screen_number);
context->white = WhitePixel(dpy, screen_number);
context->vclass = context->visual->class;
}
}
gcv.function = GXcopy;
gcv.graphics_exposures = False;
context->copy_gc = XCreateGC(dpy, context->drawable, GCFunction | GCGraphicsExposures, &gcv);
if (context->vclass == PseudoColor || context->vclass == StaticColor) {
if (!setupPseudoColorColormap(context)) {
free(context);
return NULL;
}
} else if (context->vclass == GrayScale || context->vclass == StaticGray) {
context->colors = allocateGrayScale(context);
if (!context->colors) {
free(context);
return NULL;
}
} else if (context->vclass == TrueColor) {
/* calc offsets to create a TrueColor pixel */
context->red_offset = count_offset(context->visual->red_mask);
context->green_offset = count_offset(context->visual->green_mask);
context->blue_offset = count_offset(context->visual->blue_mask);
/* disable dithering on 24 bits visuals */
if (context->depth >= 24)
context->attribs->render_mode = RBestMatchRendering;
}
/* check avaiability of MIT-SHM */
#ifdef USE_XSHM
if (!(context->attribs->flags & RC_UseSharedMemory)) {
context->attribs->flags |= RC_UseSharedMemory;
context->attribs->use_shared_memory = True;
}
if (context->attribs->use_shared_memory) {
int major, minor;
Bool sharedPixmaps;
context->flags.use_shared_pixmap = 0;
if (!XShmQueryVersion(context->dpy, &major, &minor, &sharedPixmaps)) {
context->attribs->use_shared_memory = False;
} else {
if (XShmPixmapFormat(context->dpy) == ZPixmap)
context->flags.use_shared_pixmap = sharedPixmaps;
}
}
#endif
return context;
}
void RDestroyContext(RContext *context)
{
if (context) {
if (context->copy_gc)
XFreeGC(context->dpy, context->copy_gc);
if (context->attribs) {
if ((context->attribs->flags & RC_VisualID) &&
!(context->attribs->flags & RC_DefaultVisual))
XDestroyWindow(context->dpy, context->drawable);
free(context->attribs);
}
free(context);
}
}
static Bool bestContext(Display * dpy, int screen_number, RContext * context)
{
XVisualInfo *vinfo = NULL, rvinfo;
int best = -1, numvis, i;
long flags;
XSetWindowAttributes attr;
rvinfo.class = TrueColor;
rvinfo.screen = screen_number;
flags = VisualClassMask | VisualScreenMask;
vinfo = XGetVisualInfo(dpy, flags, &rvinfo, &numvis);
if (vinfo) { /* look for a TrueColor, 24-bit or more (pref 24) */
for (i = numvis - 1, best = -1; i >= 0; i--) {
if (vinfo[i].depth == 24)
best = i;
else if (vinfo[i].depth > 24 && best < 0)
best = i;
}
}
if (best > -1) {
context->visual = vinfo[best].visual;
context->depth = vinfo[best].depth;
context->vclass = vinfo[best].class;
getColormap(context, screen_number);
attr.colormap = context->cmap;
attr.override_redirect = True;
attr.border_pixel = 0;
context->drawable =
XCreateWindow(dpy, RootWindow(dpy, screen_number),
1, 1, 1, 1, 0, context->depth,
CopyFromParent, context->visual,
CWBorderPixel | CWColormap | CWOverrideRedirect, &attr);
}
if (vinfo)
XFree((char *)vinfo);
if (best < 0)
return False;
else
return True;
}