1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-18 19:50:17 +01:00

parameter noise exploration - using Noisy Nets

This commit is contained in:
Gal Leibovich
2018-08-27 18:19:01 +03:00
parent 658b437079
commit 1aa2ab0590
49 changed files with 536 additions and 433 deletions

View File

@@ -19,11 +19,40 @@ from typing import List, Union
import numpy as np
import tensorflow as tf
from rl_coach.architectures.tensorflow_components.architecture import batchnorm_activation_dropout
from rl_coach.base_parameters import EmbedderScheme
from rl_coach.architectures.tensorflow_components.architecture import batchnorm_activation_dropout, Dense
from rl_coach.base_parameters import EmbedderScheme, NetworkComponentParameters
from rl_coach.core_types import InputEmbedding
class InputEmbedderParameters(NetworkComponentParameters):
def __init__(self, activation_function: str='relu', scheme: Union[List, EmbedderScheme]=EmbedderScheme.Medium,
batchnorm: bool=False, dropout=False, name: str='embedder', input_rescaling=None, input_offset=None,
input_clipping=None, dense_layer=Dense):
super().__init__(dense_layer=dense_layer)
self.activation_function = activation_function
self.scheme = scheme
self.batchnorm = batchnorm
self.dropout = dropout
if input_rescaling is None:
input_rescaling = {'image': 255.0, 'vector': 1.0}
if input_offset is None:
input_offset = {'image': 0.0, 'vector': 0.0}
self.input_rescaling = input_rescaling
self.input_offset = input_offset
self.input_clipping = input_clipping
self.name = name
@property
def path(self):
return {
"image": 'image_embedder:ImageEmbedder',
"vector": 'vector_embedder:VectorEmbedder'
}
class InputEmbedder(object):
"""
An input embedder is the first part of the network, which takes the input from the state and produces a vector
@@ -32,7 +61,7 @@ class InputEmbedder(object):
"""
def __init__(self, input_size: List[int], activation_function=tf.nn.relu,
scheme: EmbedderScheme=None, batchnorm: bool=False, dropout: bool=False,
name: str= "embedder", input_rescaling=1.0, input_offset=0.0, input_clipping=None):
name: str= "embedder", input_rescaling=1.0, input_offset=0.0, input_clipping=None, dense_layer=Dense):
self.name = name
self.input_size = input_size
self.activation_function = activation_function
@@ -47,6 +76,7 @@ class InputEmbedder(object):
self.input_rescaling = input_rescaling
self.input_offset = input_offset
self.input_clipping = input_clipping
self.dense_layer = dense_layer
def __call__(self, prev_input_placeholder=None):
with tf.variable_scope(self.get_name()):

View File

@@ -18,7 +18,7 @@ from typing import List
import tensorflow as tf
from rl_coach.architectures.tensorflow_components.architecture import Conv2d
from rl_coach.architectures.tensorflow_components.architecture import Conv2d, Dense
from rl_coach.architectures.tensorflow_components.embedders.embedder import InputEmbedder
from rl_coach.base_parameters import EmbedderScheme
from rl_coach.core_types import InputImageEmbedding
@@ -30,45 +30,49 @@ class ImageEmbedder(InputEmbedder):
The embedder is intended for image like inputs, where the channels are expected to be the last axis.
The embedder also allows custom rescaling of the input prior to the neural network.
"""
schemes = {
EmbedderScheme.Empty:
[],
EmbedderScheme.Shallow:
[
Conv2d([32, 3, 1])
],
# atari dqn
EmbedderScheme.Medium:
[
Conv2d([32, 8, 4]),
Conv2d([64, 4, 2]),
Conv2d([64, 3, 1])
],
# carla
EmbedderScheme.Deep: \
[
Conv2d([32, 5, 2]),
Conv2d([32, 3, 1]),
Conv2d([64, 3, 2]),
Conv2d([64, 3, 1]),
Conv2d([128, 3, 2]),
Conv2d([128, 3, 1]),
Conv2d([256, 3, 2]),
Conv2d([256, 3, 1])
]
}
def __init__(self, input_size: List[int], activation_function=tf.nn.relu,
scheme: EmbedderScheme=EmbedderScheme.Medium, batchnorm: bool=False, dropout: bool=False,
name: str= "embedder", input_rescaling: float=255.0, input_offset: float=0.0, input_clipping=None):
name: str= "embedder", input_rescaling: float=255.0, input_offset: float=0.0, input_clipping=None,
dense_layer=Dense):
super().__init__(input_size, activation_function, scheme, batchnorm, dropout, name, input_rescaling,
input_offset, input_clipping)
input_offset, input_clipping, dense_layer=dense_layer)
self.return_type = InputImageEmbedding
if len(input_size) != 3 and scheme != EmbedderScheme.Empty:
raise ValueError("Image embedders expect the input size to have 3 dimensions. The given size is: {}"
.format(input_size))
@property
def schemes(self):
return {
EmbedderScheme.Empty:
[],
EmbedderScheme.Shallow:
[
Conv2d([32, 3, 1])
],
# atari dqn
EmbedderScheme.Medium:
[
Conv2d([32, 8, 4]),
Conv2d([64, 4, 2]),
Conv2d([64, 3, 1])
],
# carla
EmbedderScheme.Deep: \
[
Conv2d([32, 5, 2]),
Conv2d([32, 3, 1]),
Conv2d([64, 3, 2]),
Conv2d([64, 3, 1]),
Conv2d([128, 3, 2]),
Conv2d([128, 3, 1]),
Conv2d([256, 3, 2]),
Conv2d([256, 3, 1])
]
}

View File

@@ -29,36 +29,40 @@ class VectorEmbedder(InputEmbedder):
An input embedder that is intended for inputs that can be represented as vectors.
The embedder flattens the input, applies several dense layers to it and returns the output.
"""
schemes = {
EmbedderScheme.Empty:
[],
EmbedderScheme.Shallow:
[
Dense([128])
],
# dqn
EmbedderScheme.Medium:
[
Dense([256])
],
# carla
EmbedderScheme.Deep: \
[
Dense([128]),
Dense([128]),
Dense([128])
]
}
def __init__(self, input_size: List[int], activation_function=tf.nn.relu,
scheme: EmbedderScheme=EmbedderScheme.Medium, batchnorm: bool=False, dropout: bool=False,
name: str= "embedder", input_rescaling: float=1.0, input_offset:float=0.0, input_clipping=None):
name: str= "embedder", input_rescaling: float=1.0, input_offset:float=0.0, input_clipping=None,
dense_layer=Dense):
super().__init__(input_size, activation_function, scheme, batchnorm, dropout, name,
input_rescaling, input_offset, input_clipping)
input_rescaling, input_offset, input_clipping, dense_layer=dense_layer)
self.return_type = InputVectorEmbedding
if len(self.input_size) != 1 and scheme != EmbedderScheme.Empty:
raise ValueError("The input size of a vector embedder must contain only a single dimension")
@property
def schemes(self):
return {
EmbedderScheme.Empty:
[],
EmbedderScheme.Shallow:
[
self.dense_layer([128])
],
# dqn
EmbedderScheme.Medium:
[
self.dense_layer([256])
],
# carla
EmbedderScheme.Deep: \
[
self.dense_layer([128]),
self.dense_layer([128]),
self.dense_layer([128])
]
}