1
0
mirror of https://github.com/gryf/coach.git synced 2026-01-29 03:25:47 +01:00

Cleanup imports.

Till now, most of the modules were importing all of the module objects
(variables, classes, functions, other imports) into module namespace,
which potentially could (and was) cause of unintentional use of class or
methods, which was indirect imported.

With this patch, all the star imports were substituted with top-level
module, which provides desired class or function.

Besides, all imports where sorted (where possible) in a way pep8[1]
suggests - first are imports from standard library, than goes third
party imports (like numpy, tensorflow etc) and finally coach modules.
All of those sections are separated by one empty line.

[1] https://www.python.org/dev/peps/pep-0008/#imports
This commit is contained in:
Roman Dobosz
2018-04-12 19:46:32 +02:00
parent cafa152382
commit 1b095aeeca
75 changed files with 1169 additions and 1139 deletions

View File

@@ -1,5 +1,5 @@
#
# Copyright (c) 2017 Intel Corporation
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@@ -13,19 +13,16 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import sys
import copy
from ngraph.frontends.neon import *
import ngraph as ng
from architectures.architecture import *
import numpy as np
from utils import *
from architectures import architecture
import utils
class NeonArchitecture(Architecture):
class NeonArchitecture(architecture.Architecture):
def __init__(self, tuning_parameters, name="", global_network=None, network_is_local=True):
Architecture.__init__(self, tuning_parameters, name)
architecture.Architecture.__init__(self, tuning_parameters, name)
assert tuning_parameters.agent.neon_support, 'Neon is not supported for this agent'
self.clip_error = tuning_parameters.clip_gradients
self.total_loss = None
@@ -113,8 +110,8 @@ class NeonArchitecture(Architecture):
def accumulate_gradients(self, inputs, targets):
# Neon doesn't currently allow separating the grads calculation and grad apply operations
# so this feature is not currently available. instead we do a full training iteration
inputs = force_list(inputs)
targets = force_list(targets)
inputs = utils.force_list(inputs)
targets = utils.force_list(targets)
for idx, input in enumerate(inputs):
inputs[idx] = input.swapaxes(0, -1)

View File

@@ -1,5 +1,5 @@
#
# Copyright (c) 2017 Intel Corporation
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@@ -13,10 +13,9 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import ngraph.frontends.neon as neon
import ngraph as ng
from ngraph.util.names import name_scope
import ngraph.frontends.neon as neon
import ngraph.util.names as ngraph_names
class InputEmbedder(object):
@@ -31,7 +30,7 @@ class InputEmbedder(object):
self.output = None
def __call__(self, prev_input_placeholder=None):
with name_scope(self.get_name()):
with ngraph_names.name_scope(self.get_name()):
# create the input axes
axes = []
if len(self.input_size) == 2:

View File

@@ -13,15 +13,18 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import ngraph as ng
from ngraph.frontends import neon
from ngraph.util import names as ngraph_names
from architectures.neon_components.embedders import *
from architectures.neon_components.heads import *
from architectures.neon_components.middleware import *
from architectures.neon_components.architecture import *
from configurations import InputTypes, OutputTypes, MiddlewareTypes
from architectures.neon_components import architecture
from architectures.neon_components import embedders
from architectures.neon_components import middleware
from architectures.neon_components import heads
import configurations as conf
class GeneralNeonNetwork(NeonArchitecture):
class GeneralNeonNetwork(architecture.NeonArchitecture):
def __init__(self, tuning_parameters, name="", global_network=None, network_is_local=True):
self.global_network = global_network
self.network_is_local = network_is_local
@@ -34,7 +37,7 @@ class GeneralNeonNetwork(NeonArchitecture):
self.activation_function = self.get_activation_function(
tuning_parameters.agent.hidden_layers_activation_function)
NeonArchitecture.__init__(self, tuning_parameters, name, global_network, network_is_local)
architecture.NeonArchitecture.__init__(self, tuning_parameters, name, global_network, network_is_local)
def get_activation_function(self, activation_function_string):
activation_functions = {
@@ -53,36 +56,36 @@ class GeneralNeonNetwork(NeonArchitecture):
# the observation can be either an image or a vector
def get_observation_embedding(with_timestep=False):
if self.input_height > 1:
return ImageEmbedder((self.input_depth, self.input_height, self.input_width), self.batch_size,
name="observation")
return embedders.ImageEmbedder((self.input_depth, self.input_height, self.input_width), self.batch_size,
name="observation")
else:
return VectorEmbedder((self.input_depth, self.input_width + int(with_timestep)), self.batch_size,
name="observation")
return embedders.VectorEmbedder((self.input_depth, self.input_width + int(with_timestep)), self.batch_size,
name="observation")
input_mapping = {
InputTypes.Observation: get_observation_embedding(),
InputTypes.Measurements: VectorEmbedder(self.measurements_size, self.batch_size, name="measurements"),
InputTypes.GoalVector: VectorEmbedder(self.measurements_size, self.batch_size, name="goal_vector"),
InputTypes.Action: VectorEmbedder((self.num_actions,), self.batch_size, name="action"),
InputTypes.TimedObservation: get_observation_embedding(with_timestep=True),
conf.InputTypes.Observation: get_observation_embedding(),
conf.InputTypes.Measurements: embedders.VectorEmbedder(self.measurements_size, self.batch_size, name="measurements"),
conf.InputTypes.GoalVector: embedders.VectorEmbedder(self.measurements_size, self.batch_size, name="goal_vector"),
conf.InputTypes.Action: embedders.VectorEmbedder((self.num_actions,), self.batch_size, name="action"),
conf.InputTypes.TimedObservation: get_observation_embedding(with_timestep=True),
}
return input_mapping[embedder_type]
def get_middleware_embedder(self, middleware_type):
return {MiddlewareTypes.LSTM: None, # LSTM over Neon is currently not supported in Coach
MiddlewareTypes.FC: FC_Embedder}.get(middleware_type)(self.activation_function)
return {conf.MiddlewareTypes.LSTM: None, # LSTM over Neon is currently not supported in Coach
conf.MiddlewareTypes.FC: middleware.FC_Embedder}.get(middleware_type)(self.activation_function)
def get_output_head(self, head_type, head_idx, loss_weight=1.):
output_mapping = {
OutputTypes.Q: QHead,
OutputTypes.DuelingQ: DuelingQHead,
OutputTypes.V: None, # Policy Optimization algorithms over Neon are currently not supported in Coach
OutputTypes.Pi: None, # Policy Optimization algorithms over Neon are currently not supported in Coach
OutputTypes.MeasurementsPrediction: None, # DFP over Neon is currently not supported in Coach
OutputTypes.DNDQ: None, # NEC over Neon is currently not supported in Coach
OutputTypes.NAF: None, # NAF over Neon is currently not supported in Coach
OutputTypes.PPO: None, # PPO over Neon is currently not supported in Coach
OutputTypes.PPO_V: None # PPO over Neon is currently not supported in Coach
conf.OutputTypes.Q: heads.QHead,
conf.OutputTypes.DuelingQ: heads.DuelingQHead,
conf.OutputTypes.V: None, # Policy Optimization algorithms over Neon are currently not supported in Coach
conf.OutputTypes.Pi: None, # Policy Optimization algorithms over Neon are currently not supported in Coach
conf.OutputTypes.MeasurementsPrediction: None, # DFP over Neon is currently not supported in Coach
conf.OutputTypes.DNDQ: None, # NEC over Neon is currently not supported in Coach
conf.OutputTypes.NAF: None, # NAF over Neon is currently not supported in Coach
conf.OutputTypes.PPO: None, # PPO over Neon is currently not supported in Coach
conf.OutputTypes.PPO_V: None # PPO over Neon is currently not supported in Coach
}
return output_mapping[head_type](self.tp, head_idx, loss_weight, self.network_is_local)
@@ -104,7 +107,7 @@ class GeneralNeonNetwork(NeonArchitecture):
done_creating_input_placeholders = False
for network_idx in range(self.num_networks):
with name_scope('network_{}'.format(network_idx)):
with ngraph_names.name_scope('network_{}'.format(network_idx)):
####################
# Input Embeddings #
####################

View File

@@ -1,5 +1,5 @@
#
# Copyright (c) 2017 Intel Corporation
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@@ -13,13 +13,12 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import ngraph as ng
from ngraph.util.names import name_scope
import ngraph.frontends.neon as neon
import numpy as np
from utils import force_list
from architectures.neon_components.losses import *
from ngraph.frontends import neon
from ngraph.util import names as ngraph_names
import utils
from architectures.neon_components import losses
class Head(object):
@@ -30,7 +29,7 @@ class Head(object):
self.loss = []
self.loss_type = []
self.regularizations = []
self.loss_weight = force_list(loss_weight)
self.loss_weight = utils.force_list(loss_weight)
self.weights_init = neon.GlorotInit()
self.biases_init = neon.ConstantInit()
self.target = []
@@ -44,15 +43,15 @@ class Head(object):
:param input_layer: the input to the graph
:return: the output of the last layer and the target placeholder
"""
with name_scope(self.get_name()):
with ngraph_names.name_scope(self.get_name()):
self._build_module(input_layer)
self.output = force_list(self.output)
self.target = force_list(self.target)
self.input = force_list(self.input)
self.loss_type = force_list(self.loss_type)
self.loss = force_list(self.loss)
self.regularizations = force_list(self.regularizations)
self.output = utils.force_list(self.output)
self.target = utils.force_list(self.target)
self.input = utils.force_list(self.input)
self.loss_type = utils.force_list(self.loss_type)
self.loss = utils.force_list(self.loss)
self.regularizations = utils.force_list(self.regularizations)
if self.is_local:
self.set_loss()
@@ -106,7 +105,7 @@ class QHead(Head):
if tuning_parameters.agent.replace_mse_with_huber_loss:
raise Exception("huber loss is not supported in neon")
else:
self.loss_type = mean_squared_error
self.loss_type = losses.mean_squared_error
def _build_module(self, input_layer):
# Standard Q Network
@@ -159,7 +158,7 @@ class MeasurementsPredictionHead(Head):
if tuning_parameters.agent.replace_mse_with_huber_loss:
raise Exception("huber loss is not supported in neon")
else:
self.loss_type = mean_squared_error
self.loss_type = losses.mean_squared_error
def _build_module(self, input_layer):
# This is almost exactly the same as Dueling Network but we predict the future measurements for each action
@@ -167,7 +166,7 @@ class MeasurementsPredictionHead(Head):
multistep_measurements_size = self.measurements_size[0] * self.num_predicted_steps_ahead
# actions expectation tower (expectation stream) - E
with name_scope("expectation_stream"):
with ngraph_names.name_scope("expectation_stream"):
expectation_stream = neon.Sequential([
neon.Affine(nout=256, activation=neon.Rectlin(),
weight_init=self.weights_init, bias_init=self.biases_init),
@@ -176,7 +175,7 @@ class MeasurementsPredictionHead(Head):
])(input_layer)
# action fine differences tower (action stream) - A
with name_scope("action_stream"):
with ngraph_names.name_scope("action_stream"):
action_stream_unnormalized = neon.Sequential([
neon.Affine(nout=256, activation=neon.Rectlin(),
weight_init=self.weights_init, bias_init=self.biases_init),
@@ -191,4 +190,3 @@ class MeasurementsPredictionHead(Head):
# merge to future measurements predictions
self.output = repeated_expectation_stream + action_stream

View File

@@ -1,5 +1,5 @@
#
# Copyright (c) 2017 Intel Corporation
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@@ -13,15 +13,12 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import ngraph as ng
import ngraph.frontends.neon as neon
from ngraph.util.names import name_scope
import numpy as np
from ngraph.util import names as ngraph_names
def mean_squared_error(targets, outputs, weights=1.0, scope=""):
with name_scope(scope):
with ngraph_names.name_scope(scope):
# TODO: reduce mean over the action axis
loss = ng.squared_L2(targets - outputs)
weighted_loss = loss * weights

View File

@@ -1,5 +1,5 @@
#
# Copyright (c) 2017 Intel Corporation
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@@ -13,11 +13,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import ngraph as ng
import ngraph.frontends.neon as neon
from ngraph.util.names import name_scope
import numpy as np
from ngraph.util import names as ngraph_names
class MiddlewareEmbedder(object):
@@ -30,7 +27,7 @@ class MiddlewareEmbedder(object):
self.activation_function = activation_function
def __call__(self, input_layer):
with name_scope(self.get_name()):
with ngraph_names.name_scope(self.get_name()):
self.input = input_layer
self._build_module()