mirror of
https://github.com/gryf/coach.git
synced 2025-12-18 19:50:17 +01:00
update CartPole_PPO not addressed during rebase (#41)
This commit is contained in:
committed by
Scott Leishman
parent
f835ac902c
commit
2cc6abc3c4
@@ -1,9 +1,8 @@
|
|||||||
from rl_coach.agents.clipped_ppo_agent import ClippedPPOAgentParameters
|
from rl_coach.agents.clipped_ppo_agent import ClippedPPOAgentParameters
|
||||||
from rl_coach.architectures.tensorflow_components.architecture import Dense
|
from rl_coach.architectures.tensorflow_components.layers import Dense
|
||||||
from rl_coach.base_parameters import VisualizationParameters, PresetValidationParameters
|
from rl_coach.base_parameters import VisualizationParameters, PresetValidationParameters
|
||||||
from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps, RunPhase
|
from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentSteps, RunPhase
|
||||||
from rl_coach.environments.environment import MaxDumpMethod, SelectedPhaseOnlyDumpMethod, SingleLevelSelection
|
from rl_coach.environments.gym_environment import GymVectorEnvironment, mujoco_v2
|
||||||
from rl_coach.environments.gym_environment import Mujoco, mujoco_v2, MujocoInputFilter
|
|
||||||
from rl_coach.exploration_policies.additive_noise import AdditiveNoiseParameters
|
from rl_coach.exploration_policies.additive_noise import AdditiveNoiseParameters
|
||||||
from rl_coach.exploration_policies.e_greedy import EGreedyParameters
|
from rl_coach.exploration_policies.e_greedy import EGreedyParameters
|
||||||
from rl_coach.filters.observation.observation_normalization_filter import ObservationNormalizationFilter
|
from rl_coach.filters.observation.observation_normalization_filter import ObservationNormalizationFilter
|
||||||
@@ -29,8 +28,8 @@ agent_params = ClippedPPOAgentParameters()
|
|||||||
|
|
||||||
agent_params.network_wrappers['main'].learning_rate = 0.0003
|
agent_params.network_wrappers['main'].learning_rate = 0.0003
|
||||||
agent_params.network_wrappers['main'].input_embedders_parameters['observation'].activation_function = 'tanh'
|
agent_params.network_wrappers['main'].input_embedders_parameters['observation'].activation_function = 'tanh'
|
||||||
agent_params.network_wrappers['main'].input_embedders_parameters['observation'].scheme = [Dense([64])]
|
agent_params.network_wrappers['main'].input_embedders_parameters['observation'].scheme = [Dense(64)]
|
||||||
agent_params.network_wrappers['main'].middleware_parameters.scheme = [Dense([64])]
|
agent_params.network_wrappers['main'].middleware_parameters.scheme = [Dense(64)]
|
||||||
agent_params.network_wrappers['main'].middleware_parameters.activation_function = 'tanh'
|
agent_params.network_wrappers['main'].middleware_parameters.activation_function = 'tanh'
|
||||||
agent_params.network_wrappers['main'].batch_size = 64
|
agent_params.network_wrappers['main'].batch_size = 64
|
||||||
agent_params.network_wrappers['main'].optimizer_epsilon = 1e-5
|
agent_params.network_wrappers['main'].optimizer_epsilon = 1e-5
|
||||||
@@ -45,22 +44,15 @@ agent_params.algorithm.optimization_epochs = 10
|
|||||||
agent_params.algorithm.estimate_state_value_using_gae = True
|
agent_params.algorithm.estimate_state_value_using_gae = True
|
||||||
agent_params.algorithm.num_steps_between_copying_online_weights_to_target = EnvironmentSteps(2048)
|
agent_params.algorithm.num_steps_between_copying_online_weights_to_target = EnvironmentSteps(2048)
|
||||||
|
|
||||||
# agent_params.input_filter = MujocoInputFilter()
|
|
||||||
agent_params.exploration = EGreedyParameters()
|
agent_params.exploration = EGreedyParameters()
|
||||||
agent_params.exploration.epsilon_schedule = LinearSchedule(1.0, 0.01, 10000)
|
agent_params.exploration.epsilon_schedule = LinearSchedule(1.0, 0.01, 10000)
|
||||||
# agent_params.pre_network_filter = MujocoInputFilter()
|
|
||||||
agent_params.pre_network_filter.add_observation_filter('observation', 'normalize_observation',
|
agent_params.pre_network_filter.add_observation_filter('observation', 'normalize_observation',
|
||||||
ObservationNormalizationFilter(name='normalize_observation'))
|
ObservationNormalizationFilter(name='normalize_observation'))
|
||||||
|
|
||||||
###############
|
###############
|
||||||
# Environment #
|
# Environment #
|
||||||
###############
|
###############
|
||||||
env_params = Mujoco()
|
env_params = GymVectorEnvironment(level='CartPole-v0')
|
||||||
env_params.level = 'CartPole-v0'
|
|
||||||
|
|
||||||
visualization_params = VisualizationParameters()
|
|
||||||
visualization_params.video_dump_methods = [SelectedPhaseOnlyDumpMethod(RunPhase.TEST), MaxDumpMethod()]
|
|
||||||
visualization_params.dump_mp4 = False
|
|
||||||
|
|
||||||
########
|
########
|
||||||
# Test #
|
# Test #
|
||||||
@@ -71,5 +63,5 @@ preset_validation_params.min_reward_threshold = 150
|
|||||||
preset_validation_params.max_episodes_to_achieve_reward = 250
|
preset_validation_params.max_episodes_to_achieve_reward = 250
|
||||||
|
|
||||||
graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params,
|
graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params,
|
||||||
schedule_params=schedule_params, visualization_params=visualization_params,
|
schedule_params=schedule_params, vis_params=VisualizationParameters(),
|
||||||
preset_validation_params=preset_validation_params)
|
preset_validation_params=preset_validation_params)
|
||||||
|
|||||||
Reference in New Issue
Block a user