mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 11:10:20 +01:00
@@ -21,13 +21,13 @@ from rl_coach.base_parameters import EmbedderScheme, NetworkComponentParameters
|
||||
|
||||
class InputEmbedderParameters(NetworkComponentParameters):
|
||||
def __init__(self, activation_function: str='relu', scheme: Union[List, EmbedderScheme]=EmbedderScheme.Medium,
|
||||
batchnorm: bool=False, dropout=False, name: str='embedder', input_rescaling=None, input_offset=None,
|
||||
input_clipping=None, dense_layer=None, is_training=False):
|
||||
batchnorm: bool=False, dropout_rate: float=0.0, name: str='embedder', input_rescaling=None,
|
||||
input_offset=None, input_clipping=None, dense_layer=None, is_training=False):
|
||||
super().__init__(dense_layer=dense_layer)
|
||||
self.activation_function = activation_function
|
||||
self.scheme = scheme
|
||||
self.batchnorm = batchnorm
|
||||
self.dropout = dropout
|
||||
self.dropout_rate = dropout_rate
|
||||
|
||||
if input_rescaling is None:
|
||||
input_rescaling = {'image': 255.0, 'vector': 1.0}
|
||||
|
||||
@@ -22,12 +22,12 @@ from rl_coach.base_parameters import MiddlewareScheme, NetworkComponentParameter
|
||||
class MiddlewareParameters(NetworkComponentParameters):
|
||||
def __init__(self, parameterized_class_name: str,
|
||||
activation_function: str='relu', scheme: Union[List, MiddlewareScheme]=MiddlewareScheme.Medium,
|
||||
batchnorm: bool=False, dropout: bool=False, name='middleware', dense_layer=None, is_training=False):
|
||||
batchnorm: bool=False, dropout_rate: float=0.0, name='middleware', dense_layer=None, is_training=False):
|
||||
super().__init__(dense_layer=dense_layer)
|
||||
self.activation_function = activation_function
|
||||
self.scheme = scheme
|
||||
self.batchnorm = batchnorm
|
||||
self.dropout = dropout
|
||||
self.dropout_rate = dropout_rate
|
||||
self.name = name
|
||||
self.is_training = is_training
|
||||
self.parameterized_class_name = parameterized_class_name
|
||||
@@ -36,19 +36,19 @@ class MiddlewareParameters(NetworkComponentParameters):
|
||||
class FCMiddlewareParameters(MiddlewareParameters):
|
||||
def __init__(self, activation_function='relu',
|
||||
scheme: Union[List, MiddlewareScheme] = MiddlewareScheme.Medium,
|
||||
batchnorm: bool = False, dropout: bool = False,
|
||||
batchnorm: bool = False, dropout_rate: float = 0.0,
|
||||
name="middleware_fc_embedder", dense_layer=None, is_training=False):
|
||||
super().__init__(parameterized_class_name="FCMiddleware", activation_function=activation_function,
|
||||
scheme=scheme, batchnorm=batchnorm, dropout=dropout, name=name, dense_layer=dense_layer,
|
||||
scheme=scheme, batchnorm=batchnorm, dropout_rate=dropout_rate, name=name, dense_layer=dense_layer,
|
||||
is_training=is_training)
|
||||
|
||||
|
||||
class LSTMMiddlewareParameters(MiddlewareParameters):
|
||||
def __init__(self, activation_function='relu', number_of_lstm_cells=256,
|
||||
scheme: MiddlewareScheme = MiddlewareScheme.Medium,
|
||||
batchnorm: bool = False, dropout: bool = False,
|
||||
batchnorm: bool = False, dropout_rate: float = 0.0,
|
||||
name="middleware_lstm_embedder", dense_layer=None, is_training=False):
|
||||
super().__init__(parameterized_class_name="LSTMMiddleware", activation_function=activation_function,
|
||||
scheme=scheme, batchnorm=batchnorm, dropout=dropout, name=name, dense_layer=dense_layer,
|
||||
scheme=scheme, batchnorm=batchnorm, dropout_rate=dropout_rate, name=name, dense_layer=dense_layer,
|
||||
is_training=is_training)
|
||||
self.number_of_lstm_cells = number_of_lstm_cells
|
||||
@@ -39,8 +39,8 @@ class InputEmbedder(nn.HybridBlock):
|
||||
self.net.add(nn.BatchNorm())
|
||||
if params.activation_function:
|
||||
self.net.add(nn.Activation(params.activation_function))
|
||||
if params.dropout:
|
||||
self.net.add(nn.Dropout(rate=params.dropout))
|
||||
if params.dropout_rate:
|
||||
self.net.add(nn.Dropout(rate=params.dropout_rate))
|
||||
|
||||
@property
|
||||
def schemes(self) -> dict:
|
||||
|
||||
@@ -36,8 +36,8 @@ class Middleware(nn.HybridBlock):
|
||||
self.net.add(nn.BatchNorm())
|
||||
if params.activation_function:
|
||||
self.net.add(nn.Activation(params.activation_function))
|
||||
if params.dropout:
|
||||
self.net.add(nn.Dropout(rate=params.dropout))
|
||||
if params.dropout_rate:
|
||||
self.net.add(nn.Dropout(rate=params.dropout_rate))
|
||||
|
||||
@property
|
||||
def schemes(self) -> dict:
|
||||
|
||||
@@ -34,15 +34,14 @@ class InputEmbedder(object):
|
||||
can be multiple embedders in a single network
|
||||
"""
|
||||
def __init__(self, input_size: List[int], activation_function=tf.nn.relu,
|
||||
scheme: EmbedderScheme=None, batchnorm: bool=False, dropout: bool=False,
|
||||
scheme: EmbedderScheme=None, batchnorm: bool=False, dropout_rate: float=0.0,
|
||||
name: str= "embedder", input_rescaling=1.0, input_offset=0.0, input_clipping=None, dense_layer=Dense,
|
||||
is_training=False):
|
||||
self.name = name
|
||||
self.input_size = input_size
|
||||
self.activation_function = activation_function
|
||||
self.batchnorm = batchnorm
|
||||
self.dropout = dropout
|
||||
self.dropout_rate = 0
|
||||
self.dropout_rate = dropout_rate
|
||||
self.input = None
|
||||
self.output = None
|
||||
self.scheme = scheme
|
||||
@@ -68,7 +67,7 @@ class InputEmbedder(object):
|
||||
# we allow adding batchnorm, dropout or activation functions after each layer.
|
||||
# The motivation is to simplify the transition between a network with batchnorm and a network without
|
||||
# batchnorm to a single flag (the same applies to activation function and dropout)
|
||||
if self.batchnorm or self.activation_function or self.dropout:
|
||||
if self.batchnorm or self.activation_function or self.dropout_rate > 0:
|
||||
for layer_idx in reversed(range(len(self.layers_params))):
|
||||
self.layers_params.insert(layer_idx+1,
|
||||
BatchnormActivationDropout(batchnorm=self.batchnorm,
|
||||
|
||||
@@ -32,10 +32,10 @@ class ImageEmbedder(InputEmbedder):
|
||||
"""
|
||||
|
||||
def __init__(self, input_size: List[int], activation_function=tf.nn.relu,
|
||||
scheme: EmbedderScheme=EmbedderScheme.Medium, batchnorm: bool=False, dropout: bool=False,
|
||||
scheme: EmbedderScheme=EmbedderScheme.Medium, batchnorm: bool=False, dropout_rate: float=0.0,
|
||||
name: str= "embedder", input_rescaling: float=255.0, input_offset: float=0.0, input_clipping=None,
|
||||
dense_layer=Dense, is_training=False):
|
||||
super().__init__(input_size, activation_function, scheme, batchnorm, dropout, name, input_rescaling,
|
||||
super().__init__(input_size, activation_function, scheme, batchnorm, dropout_rate, name, input_rescaling,
|
||||
input_offset, input_clipping, dense_layer=dense_layer, is_training=is_training)
|
||||
self.return_type = InputImageEmbedding
|
||||
if len(input_size) != 3 and scheme != EmbedderScheme.Empty:
|
||||
|
||||
@@ -31,10 +31,10 @@ class VectorEmbedder(InputEmbedder):
|
||||
"""
|
||||
|
||||
def __init__(self, input_size: List[int], activation_function=tf.nn.relu,
|
||||
scheme: EmbedderScheme=EmbedderScheme.Medium, batchnorm: bool=False, dropout: bool=False,
|
||||
name: str= "embedder", input_rescaling: float=1.0, input_offset:float=0.0, input_clipping=None,
|
||||
scheme: EmbedderScheme=EmbedderScheme.Medium, batchnorm: bool=False, dropout_rate: float=0.0,
|
||||
name: str= "embedder", input_rescaling: float=1.0, input_offset: float=0.0, input_clipping=None,
|
||||
dense_layer=Dense, is_training=False):
|
||||
super().__init__(input_size, activation_function, scheme, batchnorm, dropout, name,
|
||||
super().__init__(input_size, activation_function, scheme, batchnorm, dropout_rate, name,
|
||||
input_rescaling, input_offset, input_clipping, dense_layer=dense_layer,
|
||||
is_training=is_training)
|
||||
|
||||
|
||||
@@ -8,7 +8,7 @@ from rl_coach.architectures import layers
|
||||
from rl_coach.architectures.tensorflow_components import utils
|
||||
|
||||
|
||||
def batchnorm_activation_dropout(input_layer, batchnorm, activation_function, dropout, dropout_rate, is_training, name):
|
||||
def batchnorm_activation_dropout(input_layer, batchnorm, activation_function, dropout_rate, is_training, name):
|
||||
layers = [input_layer]
|
||||
|
||||
# batchnorm
|
||||
@@ -26,7 +26,7 @@ def batchnorm_activation_dropout(input_layer, batchnorm, activation_function, dr
|
||||
)
|
||||
|
||||
# dropout
|
||||
if dropout:
|
||||
if dropout_rate > 0:
|
||||
layers.append(
|
||||
tf.layers.dropout(layers[-1], dropout_rate, name="{}_dropout".format(name), training=is_training)
|
||||
)
|
||||
@@ -100,7 +100,7 @@ class BatchnormActivationDropout(layers.BatchnormActivationDropout):
|
||||
"""
|
||||
return batchnorm_activation_dropout(input_layer, batchnorm=self.batchnorm,
|
||||
activation_function=self.activation_function,
|
||||
dropout=self.dropout_rate > 0, dropout_rate=self.dropout_rate,
|
||||
dropout_rate=self.dropout_rate,
|
||||
is_training=is_training, name=name)
|
||||
|
||||
@staticmethod
|
||||
|
||||
@@ -27,10 +27,11 @@ from rl_coach.utils import force_list
|
||||
class FCMiddleware(Middleware):
|
||||
def __init__(self, activation_function=tf.nn.relu,
|
||||
scheme: MiddlewareScheme = MiddlewareScheme.Medium,
|
||||
batchnorm: bool = False, dropout: bool = False,
|
||||
batchnorm: bool = False, dropout_rate: float = 0.0,
|
||||
name="middleware_fc_embedder", dense_layer=Dense, is_training=False):
|
||||
super().__init__(activation_function=activation_function, batchnorm=batchnorm,
|
||||
dropout=dropout, scheme=scheme, name=name, dense_layer=dense_layer, is_training=is_training)
|
||||
dropout_rate=dropout_rate, scheme=scheme, name=name, dense_layer=dense_layer,
|
||||
is_training=is_training)
|
||||
self.return_type = Middleware_FC_Embedding
|
||||
self.layers = []
|
||||
|
||||
|
||||
@@ -28,10 +28,11 @@ from rl_coach.utils import force_list
|
||||
class LSTMMiddleware(Middleware):
|
||||
def __init__(self, activation_function=tf.nn.relu, number_of_lstm_cells: int=256,
|
||||
scheme: MiddlewareScheme = MiddlewareScheme.Medium,
|
||||
batchnorm: bool = False, dropout: bool = False,
|
||||
batchnorm: bool = False, dropout_rate: float = 0.0,
|
||||
name="middleware_lstm_embedder", dense_layer=Dense, is_training=False):
|
||||
super().__init__(activation_function=activation_function, batchnorm=batchnorm,
|
||||
dropout=dropout, scheme=scheme, name=name, dense_layer=dense_layer, is_training=is_training)
|
||||
dropout_rate=dropout_rate, scheme=scheme, name=name, dense_layer=dense_layer,
|
||||
is_training=is_training)
|
||||
self.return_type = Middleware_LSTM_Embedding
|
||||
self.number_of_lstm_cells = number_of_lstm_cells
|
||||
self.layers = []
|
||||
|
||||
@@ -31,15 +31,14 @@ class Middleware(object):
|
||||
"""
|
||||
def __init__(self, activation_function=tf.nn.relu,
|
||||
scheme: MiddlewareScheme = MiddlewareScheme.Medium,
|
||||
batchnorm: bool = False, dropout: bool = False, name="middleware_embedder", dense_layer=Dense,
|
||||
batchnorm: bool = False, dropout_rate: float = 0.0, name="middleware_embedder", dense_layer=Dense,
|
||||
is_training=False):
|
||||
self.name = name
|
||||
self.input = None
|
||||
self.output = None
|
||||
self.activation_function = activation_function
|
||||
self.batchnorm = batchnorm
|
||||
self.dropout = dropout
|
||||
self.dropout_rate = 0
|
||||
self.dropout_rate = dropout_rate
|
||||
self.scheme = scheme
|
||||
self.return_type = MiddlewareEmbedding
|
||||
self.dense_layer = dense_layer
|
||||
@@ -58,7 +57,7 @@ class Middleware(object):
|
||||
# we allow adding batchnorm, dropout or activation functions after each layer.
|
||||
# The motivation is to simplify the transition between a network with batchnorm and a network without
|
||||
# batchnorm to a single flag (the same applies to activation function and dropout)
|
||||
if self.batchnorm or self.activation_function or self.dropout:
|
||||
if self.batchnorm or self.activation_function or self.dropout_rate > 0:
|
||||
for layer_idx in reversed(range(len(self.layers_params))):
|
||||
self.layers_params.insert(layer_idx+1,
|
||||
BatchnormActivationDropout(batchnorm=self.batchnorm,
|
||||
|
||||
Reference in New Issue
Block a user