1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 19:20:19 +01:00

add training worker

This commit is contained in:
Zach Dwiel
2018-09-15 00:23:16 +00:00
committed by zach dwiel
parent 28926bf2a4
commit 4352d6735d

View File

@@ -0,0 +1,62 @@
"""
"""
import argparse
from rl_coach.base_parameters import TaskParameters
from rl_coach.coach import expand_preset
from rl_coach import core_types
from rl_coach.utils import short_dynamic_import
# Q: specify alternative distributed memory, or should this go in the preset?
# A: preset must define distributed memory to be used. we aren't going to take a non-distributed preset and automatically distribute it.
def training_worker(graph_manager, checkpoint_dir):
"""
restore a checkpoint then perform rollouts using the restored model
"""
# initialize graph
task_parameters = TaskParameters()
task_parameters.__dict__['save_checkpoint_dir'] = checkpoint_dir
graph_manager.create_graph(task_parameters)
# save randomly initialized graph
graph_manager.save_checkpoint()
# TODO: critical: wait for minimum number of rollouts in memory before training
# TODO: Q: training steps passed into graph_manager.train ignored?
# TODO: specify training steps between checkpoints (in preset?)
# TODO: replace while true with what? number of steps, convergence, time, ...
# TODO: low: move evaluate out of this process
# training loop
for _ in range(10):
graph_manager.phase = core_types.RunPhase.TRAIN
graph_manager.train(core_types.TrainingSteps(1))
graph_manager.phase = core_types.RunPhase.UNDEFINED
graph_manager.evaluate(graph_manager.evaluation_steps)
graph_manager.save_checkpoint()
def main():
parser = argparse.ArgumentParser()
parser.add_argument('-p', '--preset',
help="(string) Name of a preset to run (class name from the 'presets' directory.)",
type=str,
required=True)
parser.add_argument('--checkpoint_dir',
help='(string) Path to a folder containing a checkpoint to write the model to.',
type=str,
default='/checkpoint')
args = parser.parse_args()
graph_manager = short_dynamic_import(expand_preset(args.preset), ignore_module_case=True)
training_worker(
graph_manager=graph_manager,
checkpoint_dir=args.checkpoint_dir,
)
if __name__ == '__main__':
main()