mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
add training worker
This commit is contained in:
62
rl_coach/training_worker.py
Normal file
62
rl_coach/training_worker.py
Normal file
@@ -0,0 +1,62 @@
|
||||
"""
|
||||
"""
|
||||
import argparse
|
||||
|
||||
from rl_coach.base_parameters import TaskParameters
|
||||
from rl_coach.coach import expand_preset
|
||||
from rl_coach import core_types
|
||||
from rl_coach.utils import short_dynamic_import
|
||||
|
||||
# Q: specify alternative distributed memory, or should this go in the preset?
|
||||
# A: preset must define distributed memory to be used. we aren't going to take a non-distributed preset and automatically distribute it.
|
||||
|
||||
def training_worker(graph_manager, checkpoint_dir):
|
||||
"""
|
||||
restore a checkpoint then perform rollouts using the restored model
|
||||
"""
|
||||
# initialize graph
|
||||
task_parameters = TaskParameters()
|
||||
task_parameters.__dict__['save_checkpoint_dir'] = checkpoint_dir
|
||||
graph_manager.create_graph(task_parameters)
|
||||
|
||||
# save randomly initialized graph
|
||||
graph_manager.save_checkpoint()
|
||||
|
||||
# TODO: critical: wait for minimum number of rollouts in memory before training
|
||||
# TODO: Q: training steps passed into graph_manager.train ignored?
|
||||
# TODO: specify training steps between checkpoints (in preset?)
|
||||
# TODO: replace while true with what? number of steps, convergence, time, ...
|
||||
# TODO: low: move evaluate out of this process
|
||||
|
||||
# training loop
|
||||
for _ in range(10):
|
||||
graph_manager.phase = core_types.RunPhase.TRAIN
|
||||
graph_manager.train(core_types.TrainingSteps(1))
|
||||
graph_manager.phase = core_types.RunPhase.UNDEFINED
|
||||
|
||||
graph_manager.evaluate(graph_manager.evaluation_steps)
|
||||
|
||||
graph_manager.save_checkpoint()
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('-p', '--preset',
|
||||
help="(string) Name of a preset to run (class name from the 'presets' directory.)",
|
||||
type=str,
|
||||
required=True)
|
||||
parser.add_argument('--checkpoint_dir',
|
||||
help='(string) Path to a folder containing a checkpoint to write the model to.',
|
||||
type=str,
|
||||
default='/checkpoint')
|
||||
args = parser.parse_args()
|
||||
|
||||
graph_manager = short_dynamic_import(expand_preset(args.preset), ignore_module_case=True)
|
||||
|
||||
training_worker(
|
||||
graph_manager=graph_manager,
|
||||
checkpoint_dir=args.checkpoint_dir,
|
||||
)
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
Reference in New Issue
Block a user