mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 19:20:19 +01:00
network_imporvements branch merge
This commit is contained in:
167
rl_coach/architectures/tensorflow_components/layers.py
Normal file
167
rl_coach/architectures/tensorflow_components/layers.py
Normal file
@@ -0,0 +1,167 @@
|
||||
import math
|
||||
from typing import List, Union
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
from rl_coach.utils import force_list
|
||||
|
||||
|
||||
def batchnorm_activation_dropout(input_layer, batchnorm, activation_function, dropout, dropout_rate, is_training, name):
|
||||
layers = [input_layer]
|
||||
|
||||
# batchnorm
|
||||
if batchnorm:
|
||||
layers.append(
|
||||
tf.layers.batch_normalization(layers[-1], name="{}_batchnorm".format(name), training=is_training)
|
||||
)
|
||||
|
||||
# activation
|
||||
if activation_function:
|
||||
layers.append(
|
||||
activation_function(layers[-1], name="{}_activation".format(name))
|
||||
)
|
||||
|
||||
# dropout
|
||||
if dropout:
|
||||
layers.append(
|
||||
tf.layers.dropout(layers[-1], dropout_rate, name="{}_dropout".format(name), training=is_training)
|
||||
)
|
||||
|
||||
# remove the input layer from the layers list
|
||||
del layers[0]
|
||||
|
||||
return layers
|
||||
|
||||
|
||||
class Conv2d(object):
|
||||
def __init__(self, num_filters: int, kernel_size: int, strides: int):
|
||||
self.num_filters = num_filters
|
||||
self.kernel_size = kernel_size
|
||||
self.strides = strides
|
||||
|
||||
def __call__(self, input_layer, name: str=None, is_training=None):
|
||||
"""
|
||||
returns a tensorflow conv2d layer
|
||||
:param input_layer: previous layer
|
||||
:param name: layer name
|
||||
:return: conv2d layer
|
||||
"""
|
||||
return tf.layers.conv2d(input_layer, filters=self.num_filters, kernel_size=self.kernel_size,
|
||||
strides=self.strides, data_format='channels_last', name=name)
|
||||
|
||||
def __str__(self):
|
||||
return "Convolution (num filters = {}, kernel size = {}, stride = {})"\
|
||||
.format(self.num_filters, self.kernel_size, self.strides)
|
||||
|
||||
|
||||
class BatchnormActivationDropout(object):
|
||||
def __init__(self, batchnorm: bool=False, activation_function=None, dropout_rate: float=0):
|
||||
self.batchnorm = batchnorm
|
||||
self.activation_function = activation_function
|
||||
self.dropout_rate = dropout_rate
|
||||
|
||||
def __call__(self, input_layer, name: str=None, is_training=None):
|
||||
"""
|
||||
returns a list of tensorflow batchnorm, activation and dropout layers
|
||||
:param input_layer: previous layer
|
||||
:param name: layer name
|
||||
:return: batchnorm, activation and dropout layers
|
||||
"""
|
||||
return batchnorm_activation_dropout(input_layer, batchnorm=self.batchnorm,
|
||||
activation_function=self.activation_function,
|
||||
dropout=self.dropout_rate > 0, dropout_rate=self.dropout_rate,
|
||||
is_training=is_training, name=name)
|
||||
|
||||
def __str__(self):
|
||||
result = []
|
||||
if self.batchnorm:
|
||||
result += ["Batch Normalization"]
|
||||
if self.activation_function:
|
||||
result += ["Activation (type = {})".format(self.activation_function.__name__)]
|
||||
if self.dropout_rate > 0:
|
||||
result += ["Dropout (rate = {})".format(self.dropout_rate)]
|
||||
return "\n".join(result)
|
||||
|
||||
|
||||
class Dense(object):
|
||||
def __init__(self, units: int):
|
||||
self.units = units
|
||||
|
||||
def __call__(self, input_layer, name: str=None, kernel_initializer=None, activation=None, is_training=None):
|
||||
"""
|
||||
returns a tensorflow dense layer
|
||||
:param input_layer: previous layer
|
||||
:param name: layer name
|
||||
:return: dense layer
|
||||
"""
|
||||
return tf.layers.dense(input_layer, self.units, name=name, kernel_initializer=kernel_initializer,
|
||||
activation=activation)
|
||||
|
||||
def __str__(self):
|
||||
return "Dense (num outputs = {})".format(self.units)
|
||||
|
||||
|
||||
class NoisyNetDense(object):
|
||||
"""
|
||||
A factorized Noisy Net layer
|
||||
|
||||
https://arxiv.org/abs/1706.10295.
|
||||
"""
|
||||
|
||||
def __init__(self, units: int):
|
||||
self.units = units
|
||||
self.sigma0 = 0.5
|
||||
|
||||
def __call__(self, input_layer, name: str, kernel_initializer=None, activation=None, is_training=None):
|
||||
"""
|
||||
returns a NoisyNet dense layer
|
||||
:param input_layer: previous layer
|
||||
:param name: layer name
|
||||
:param kernel_initializer: initializer for kernels. Default is to use Gaussian noise that preserves stddev.
|
||||
:param activation: the activation function
|
||||
:return: dense layer
|
||||
"""
|
||||
#TODO: noise sampling should be externally controlled. DQN is fine with sampling noise for every
|
||||
# forward (either act or train, both for online and target networks).
|
||||
# A3C, on the other hand, should sample noise only when policy changes (i.e. after every t_max steps)
|
||||
|
||||
num_inputs = input_layer.get_shape()[-1].value
|
||||
num_outputs = self.units
|
||||
|
||||
stddev = 1 / math.sqrt(num_inputs)
|
||||
activation = activation if activation is not None else (lambda x: x)
|
||||
|
||||
if kernel_initializer is None:
|
||||
kernel_mean_initializer = tf.random_uniform_initializer(-stddev, stddev)
|
||||
kernel_stddev_initializer = tf.random_uniform_initializer(-stddev * self.sigma0, stddev * self.sigma0)
|
||||
else:
|
||||
kernel_mean_initializer = kernel_stddev_initializer = kernel_initializer
|
||||
with tf.variable_scope(None, default_name=name):
|
||||
weight_mean = tf.get_variable('weight_mean', shape=(num_inputs, num_outputs),
|
||||
initializer=kernel_mean_initializer)
|
||||
bias_mean = tf.get_variable('bias_mean', shape=(num_outputs,), initializer=tf.zeros_initializer())
|
||||
|
||||
weight_stddev = tf.get_variable('weight_stddev', shape=(num_inputs, num_outputs),
|
||||
initializer=kernel_stddev_initializer)
|
||||
bias_stddev = tf.get_variable('bias_stddev', shape=(num_outputs,),
|
||||
initializer=kernel_stddev_initializer)
|
||||
bias_noise = self.f(tf.random_normal((num_outputs,)))
|
||||
weight_noise = self.factorized_noise(num_inputs, num_outputs)
|
||||
|
||||
bias = bias_mean + bias_stddev * bias_noise
|
||||
weight = weight_mean + weight_stddev * weight_noise
|
||||
return activation(tf.matmul(input_layer, weight) + bias)
|
||||
|
||||
def factorized_noise(self, inputs, outputs):
|
||||
# TODO: use factorized noise only for compute intensive algos (e.g. DQN).
|
||||
# lighter algos (e.g. DQN) should not use it
|
||||
noise1 = self.f(tf.random_normal((inputs, 1)))
|
||||
noise2 = self.f(tf.random_normal((1, outputs)))
|
||||
return tf.matmul(noise1, noise2)
|
||||
|
||||
@staticmethod
|
||||
def f(values):
|
||||
return tf.sqrt(tf.abs(values)) * tf.sign(values)
|
||||
|
||||
def __str__(self):
|
||||
return "Noisy Dense (num outputs = {})".format(self.units)
|
||||
Reference in New Issue
Block a user