1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 11:10:20 +01:00
Files
coach/rl_coach/architectures/tensorflow_components/layers.py
2018-10-02 13:43:36 +03:00

168 lines
6.5 KiB
Python

import math
from typing import List, Union
import tensorflow as tf
from rl_coach.utils import force_list
def batchnorm_activation_dropout(input_layer, batchnorm, activation_function, dropout, dropout_rate, is_training, name):
layers = [input_layer]
# batchnorm
if batchnorm:
layers.append(
tf.layers.batch_normalization(layers[-1], name="{}_batchnorm".format(name), training=is_training)
)
# activation
if activation_function:
layers.append(
activation_function(layers[-1], name="{}_activation".format(name))
)
# dropout
if dropout:
layers.append(
tf.layers.dropout(layers[-1], dropout_rate, name="{}_dropout".format(name), training=is_training)
)
# remove the input layer from the layers list
del layers[0]
return layers
class Conv2d(object):
def __init__(self, num_filters: int, kernel_size: int, strides: int):
self.num_filters = num_filters
self.kernel_size = kernel_size
self.strides = strides
def __call__(self, input_layer, name: str=None, is_training=None):
"""
returns a tensorflow conv2d layer
:param input_layer: previous layer
:param name: layer name
:return: conv2d layer
"""
return tf.layers.conv2d(input_layer, filters=self.num_filters, kernel_size=self.kernel_size,
strides=self.strides, data_format='channels_last', name=name)
def __str__(self):
return "Convolution (num filters = {}, kernel size = {}, stride = {})"\
.format(self.num_filters, self.kernel_size, self.strides)
class BatchnormActivationDropout(object):
def __init__(self, batchnorm: bool=False, activation_function=None, dropout_rate: float=0):
self.batchnorm = batchnorm
self.activation_function = activation_function
self.dropout_rate = dropout_rate
def __call__(self, input_layer, name: str=None, is_training=None):
"""
returns a list of tensorflow batchnorm, activation and dropout layers
:param input_layer: previous layer
:param name: layer name
:return: batchnorm, activation and dropout layers
"""
return batchnorm_activation_dropout(input_layer, batchnorm=self.batchnorm,
activation_function=self.activation_function,
dropout=self.dropout_rate > 0, dropout_rate=self.dropout_rate,
is_training=is_training, name=name)
def __str__(self):
result = []
if self.batchnorm:
result += ["Batch Normalization"]
if self.activation_function:
result += ["Activation (type = {})".format(self.activation_function.__name__)]
if self.dropout_rate > 0:
result += ["Dropout (rate = {})".format(self.dropout_rate)]
return "\n".join(result)
class Dense(object):
def __init__(self, units: int):
self.units = units
def __call__(self, input_layer, name: str=None, kernel_initializer=None, activation=None, is_training=None):
"""
returns a tensorflow dense layer
:param input_layer: previous layer
:param name: layer name
:return: dense layer
"""
return tf.layers.dense(input_layer, self.units, name=name, kernel_initializer=kernel_initializer,
activation=activation)
def __str__(self):
return "Dense (num outputs = {})".format(self.units)
class NoisyNetDense(object):
"""
A factorized Noisy Net layer
https://arxiv.org/abs/1706.10295.
"""
def __init__(self, units: int):
self.units = units
self.sigma0 = 0.5
def __call__(self, input_layer, name: str, kernel_initializer=None, activation=None, is_training=None):
"""
returns a NoisyNet dense layer
:param input_layer: previous layer
:param name: layer name
:param kernel_initializer: initializer for kernels. Default is to use Gaussian noise that preserves stddev.
:param activation: the activation function
:return: dense layer
"""
#TODO: noise sampling should be externally controlled. DQN is fine with sampling noise for every
# forward (either act or train, both for online and target networks).
# A3C, on the other hand, should sample noise only when policy changes (i.e. after every t_max steps)
num_inputs = input_layer.get_shape()[-1].value
num_outputs = self.units
stddev = 1 / math.sqrt(num_inputs)
activation = activation if activation is not None else (lambda x: x)
if kernel_initializer is None:
kernel_mean_initializer = tf.random_uniform_initializer(-stddev, stddev)
kernel_stddev_initializer = tf.random_uniform_initializer(-stddev * self.sigma0, stddev * self.sigma0)
else:
kernel_mean_initializer = kernel_stddev_initializer = kernel_initializer
with tf.variable_scope(None, default_name=name):
weight_mean = tf.get_variable('weight_mean', shape=(num_inputs, num_outputs),
initializer=kernel_mean_initializer)
bias_mean = tf.get_variable('bias_mean', shape=(num_outputs,), initializer=tf.zeros_initializer())
weight_stddev = tf.get_variable('weight_stddev', shape=(num_inputs, num_outputs),
initializer=kernel_stddev_initializer)
bias_stddev = tf.get_variable('bias_stddev', shape=(num_outputs,),
initializer=kernel_stddev_initializer)
bias_noise = self.f(tf.random_normal((num_outputs,)))
weight_noise = self.factorized_noise(num_inputs, num_outputs)
bias = bias_mean + bias_stddev * bias_noise
weight = weight_mean + weight_stddev * weight_noise
return activation(tf.matmul(input_layer, weight) + bias)
def factorized_noise(self, inputs, outputs):
# TODO: use factorized noise only for compute intensive algos (e.g. DQN).
# lighter algos (e.g. DQN) should not use it
noise1 = self.f(tf.random_normal((inputs, 1)))
noise2 = self.f(tf.random_normal((1, outputs)))
return tf.matmul(noise1, noise2)
@staticmethod
def f(values):
return tf.sqrt(tf.abs(values)) * tf.sign(values)
def __str__(self):
return "Noisy Dense (num outputs = {})".format(self.units)