mirror of
https://github.com/gryf/coach.git
synced 2025-12-17 11:10:20 +01:00
Adding distributed experience replay
This commit is contained in:
committed by
zach dwiel
parent
747000647f
commit
5a54f67a63
199
rl_coach/memories/non_episodic/distributed_experience_replay.py
Normal file
199
rl_coach/memories/non_episodic/distributed_experience_replay.py
Normal file
@@ -0,0 +1,199 @@
|
||||
#
|
||||
# Copyright (c) 2017 Intel Corporation
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
from typing import List, Tuple, Union, Dict, Any
|
||||
|
||||
import numpy as np
|
||||
import redis
|
||||
import uuid
|
||||
import pickle
|
||||
|
||||
from rl_coach.core_types import Transition
|
||||
from rl_coach.memories.memory import Memory, MemoryGranularity, MemoryParameters
|
||||
from rl_coach.utils import ReaderWriterLock
|
||||
|
||||
|
||||
class DistributedExperienceReplayParameters(MemoryParameters):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.max_size = (MemoryGranularity.Transitions, 1000000)
|
||||
self.allow_duplicates_in_batch_sampling = True
|
||||
|
||||
@property
|
||||
def path(self):
|
||||
return 'rl_coach.memories.non_episodic.distributed_experience_replay:DistributedExperienceReplay'
|
||||
|
||||
|
||||
class DistributedExperienceReplay(Memory):
|
||||
"""
|
||||
A regular replay buffer which stores transition without any additional structure
|
||||
"""
|
||||
def __init__(self, max_size: Tuple[MemoryGranularity, int], allow_duplicates_in_batch_sampling: bool=True,
|
||||
redis_ip = 'localhost', redis_port = 6379, db = 0):
|
||||
"""
|
||||
:param max_size: the maximum number of transitions or episodes to hold in the memory
|
||||
:param allow_duplicates_in_batch_sampling: allow having the same transition multiple times in a batch
|
||||
"""
|
||||
|
||||
super().__init__(max_size)
|
||||
if max_size[0] != MemoryGranularity.Transitions:
|
||||
raise ValueError("Experience replay size can only be configured in terms of transitions")
|
||||
# self.transitions = []
|
||||
self.allow_duplicates_in_batch_sampling = allow_duplicates_in_batch_sampling
|
||||
|
||||
self.db = db
|
||||
self.redis_connection = redis.Redis(redis_ip, redis_port, self.db)
|
||||
|
||||
def length(self) -> int:
|
||||
"""
|
||||
Get the number of transitions in the ER
|
||||
"""
|
||||
return self.num_transitions()
|
||||
|
||||
def num_transitions(self) -> int:
|
||||
"""
|
||||
Get the number of transitions in the ER
|
||||
"""
|
||||
# Replace with distributed store len
|
||||
return self.redis_connection.info(section='keyspace')['db{}'.format(self.db)]['keys']
|
||||
# return len(self.transitions)
|
||||
|
||||
def sample(self, size: int) -> List[Transition]:
|
||||
"""
|
||||
Sample a batch of transitions form the replay buffer. If the requested size is larger than the number
|
||||
of samples available in the replay buffer then the batch will return empty.
|
||||
:param size: the size of the batch to sample
|
||||
:param beta: the beta parameter used for importance sampling
|
||||
:return: a batch (list) of selected transitions from the replay buffer
|
||||
"""
|
||||
transition_idx = dict()
|
||||
if self.allow_duplicates_in_batch_sampling:
|
||||
while len(transition_idx) != size:
|
||||
key = self.redis_connection.randomkey()
|
||||
transition_idx[key] = pickle.loads(self.redis_connection.get(key))
|
||||
# transition_idx = np.random.randint(self.num_transitions(), size=size)
|
||||
|
||||
else:
|
||||
if self.num_transitions() >= size:
|
||||
while len(transition_idx) != size:
|
||||
key = self.redis_connection.randomkey()
|
||||
if key in transition_idx:
|
||||
continue
|
||||
transition_idx[key] = pickle.loads(self.redis_connection.get(key))
|
||||
# transition_idx = np.random.choice(self.num_transitions(), size=size, replace=False)
|
||||
else:
|
||||
raise ValueError("The replay buffer cannot be sampled since there are not enough transitions yet. "
|
||||
"There are currently {} transitions".format(self.num_transitions()))
|
||||
|
||||
# Replace with distributed store
|
||||
batch = transition_idx.values()
|
||||
|
||||
return batch
|
||||
|
||||
def _enforce_max_length(self) -> None:
|
||||
"""
|
||||
Make sure that the size of the replay buffer does not pass the maximum size allowed.
|
||||
If it passes the max size, the oldest transition in the replay buffer will be removed.
|
||||
This function does not use locks since it is only called internally
|
||||
:return: None
|
||||
"""
|
||||
granularity, size = self.max_size
|
||||
if granularity == MemoryGranularity.Transitions:
|
||||
while size != 0 and self.num_transitions() > size:
|
||||
self.redis_connection.delete(self.redis_connection.randomkey())
|
||||
else:
|
||||
raise ValueError("The granularity of the replay buffer can only be set in terms of transitions")
|
||||
|
||||
def store(self, transition: Transition, lock: bool=True) -> None:
|
||||
"""
|
||||
Store a new transition in the memory.
|
||||
:param transition: a transition to store
|
||||
:param lock: if true, will lock the readers writers lock. this can cause a deadlock if an inheriting class
|
||||
locks and then calls store with lock = True
|
||||
:return: None
|
||||
"""
|
||||
# Replace with distributed store
|
||||
|
||||
self.redis_connection.set(uuid.uuid4(), pickle.dumps(transition))
|
||||
# self.transitions.append(transition)
|
||||
self._enforce_max_length()
|
||||
|
||||
def get_transition(self, transition_index: int, lock: bool=True) -> Union[None, Transition]:
|
||||
"""
|
||||
Returns the transition in the given index. If the transition does not exist, returns None instead.
|
||||
:param transition_index: the index of the transition to return
|
||||
:param lock: use write locking if this is a shared memory
|
||||
:return: the corresponding transition
|
||||
"""
|
||||
# Replace with distributed store
|
||||
import pytest; pytest.set_trace()
|
||||
return pickle.loads(self.redis_connection.get(transition_index))
|
||||
|
||||
def remove_transition(self, transition_index: int, lock: bool=True) -> None:
|
||||
"""
|
||||
Remove the transition in the given index.
|
||||
|
||||
This does not remove the transition from the segment trees! it is just used to remove the transition
|
||||
from the transitions list
|
||||
:param transition_index: the index of the transition to remove
|
||||
:return: None
|
||||
"""
|
||||
# Replace with distributed store
|
||||
import pytest; pytest.set_trace()
|
||||
self.redis_connection.delete(transition_index)
|
||||
|
||||
# for API compatibility
|
||||
def get(self, transition_index: int, lock: bool=True) -> Union[None, Transition]:
|
||||
"""
|
||||
Returns the transition in the given index. If the transition does not exist, returns None instead.
|
||||
:param transition_index: the index of the transition to return
|
||||
:return: the corresponding transition
|
||||
"""
|
||||
# Replace with distributed store
|
||||
import pytest; pytest.set_trace()
|
||||
return self.get_transition(transition_index, lock)
|
||||
|
||||
# for API compatibility
|
||||
def remove(self, transition_index: int, lock: bool=True):
|
||||
"""
|
||||
Remove the transition in the given index
|
||||
:param transition_index: the index of the transition to remove
|
||||
:return: None
|
||||
"""
|
||||
# Replace with distributed store
|
||||
import pytest; pytest.set_trace()
|
||||
self.remove_transition(transition_index, lock)
|
||||
|
||||
def clean(self, lock: bool=True) -> None:
|
||||
"""
|
||||
Clean the memory by removing all the episodes
|
||||
:return: None
|
||||
"""
|
||||
import pytest; pytest.set_trace()
|
||||
self.redis_connection.flushall()
|
||||
# self.transitions = []
|
||||
|
||||
def mean_reward(self) -> np.ndarray:
|
||||
"""
|
||||
Get the mean reward in the replay buffer
|
||||
:return: the mean reward
|
||||
"""
|
||||
# Replace with distributed store
|
||||
import pytest; pytest.set_trace()
|
||||
mean = np.mean([pickle.loads(self.redis_connection.get(key)).reward for key in self.redis_connection.keys()])
|
||||
# mean = np.mean([transition.reward for transition in self.transitions])
|
||||
|
||||
return mean
|
||||
Reference in New Issue
Block a user