1
0
mirror of https://github.com/gryf/coach.git synced 2026-02-19 07:55:49 +01:00

Add tensor input type for arbitrary dimensional observation (#125)

* Allow arbitrary dimensional observation (non vector or image)
* Added creating PlanarMapsObservationSpace to GymEnvironment when number of channels is not 1 or 3
This commit is contained in:
Sina Afrooze
2018-11-19 06:41:12 -08:00
committed by Gal Leibovich
parent 7ba1a4393f
commit 67a90ee87e
10 changed files with 194 additions and 24 deletions

View File

@@ -30,9 +30,9 @@ class InputEmbedderParameters(NetworkComponentParameters):
self.dropout_rate = dropout_rate
if input_rescaling is None:
input_rescaling = {'image': 255.0, 'vector': 1.0}
input_rescaling = {'image': 255.0, 'vector': 1.0, 'tensor': 1.0}
if input_offset is None:
input_offset = {'image': 0.0, 'vector': 0.0}
input_offset = {'image': 0.0, 'vector': 0.0, 'tensor': 0.0}
self.input_rescaling = input_rescaling
self.input_offset = input_offset

View File

@@ -1,4 +1,7 @@
from .image_embedder import ImageEmbedder
from .tensor_embedder import TensorEmbedder
from .vector_embedder import VectorEmbedder
__all__ = ['ImageEmbedder', 'VectorEmbedder']
__all__ = ['ImageEmbedder',
'TensorEmbedder',
'VectorEmbedder']

View File

@@ -0,0 +1,53 @@
from typing import Union
from types import ModuleType
import mxnet as mx
from rl_coach.architectures.embedder_parameters import InputEmbedderParameters
from rl_coach.architectures.mxnet_components.embedders.embedder import InputEmbedder
nd_sym_type = Union[mx.nd.NDArray, mx.sym.Symbol]
class TensorEmbedder(InputEmbedder):
def __init__(self, params: InputEmbedderParameters):
"""
A tensor embedder is an input embedder that takes a tensor with arbitrary dimension and produces a vector
embedding by passing it through a neural network. An example is video data or 3D image data (i.e. 4D tensors)
or other type of data that is more than 1 dimension (i.e. not vector) but is not an image.
NOTE: There are no pre-defined schemes for tensor embedder. User must define a custom scheme by passing
a callable object as InputEmbedderParameters.scheme when defining the respective preset. This callable
object must return a Gluon HybridBlock. The hybrid_forward() of this block must accept a single input,
normalized observation, and return an embedding vector for each sample in the batch.
Keep in mind that the scheme is a list of blocks, which are stacked by optional batchnorm,
activation, and dropout in between as specified in InputEmbedderParameters.
:param params: parameters object containing input_clipping, input_rescaling, batchnorm, activation_function
and dropout properties.
"""
super(TensorEmbedder, self).__init__(params)
self.input_rescaling = params.input_rescaling['tensor']
self.input_offset = params.input_offset['tensor']
@property
def schemes(self) -> dict:
"""
Schemes are the pre-defined network architectures of various depths and complexities that can be used. Are used
to create Block when InputEmbedder is initialised.
Note: Tensor embedder doesn't define any pre-defined scheme. User must provide custom scheme in preset.
:return: dictionary of schemes, with key of type EmbedderScheme enum and value being list of mxnet.gluon.Block.
For tensor embedder, this is an empty dictionary.
"""
return {}
def hybrid_forward(self, F: ModuleType, x: nd_sym_type, *args, **kwargs) -> nd_sym_type:
"""
Used for forward pass through embedder network.
:param F: backend api, either `mxnet.nd` or `mxnet.sym` (if block has been hybridized).
:param x: image representing environment state, of shape (batch_size, in_channels, height, width).
:return: embedding of environment state, of shape (batch_size, channels).
"""
return super(TensorEmbedder, self).hybrid_forward(F, x, *args, **kwargs)

View File

@@ -33,12 +33,12 @@ from rl_coach.architectures.head_parameters import PPOVHeadParameters, VHeadPara
from rl_coach.architectures.middleware_parameters import MiddlewareParameters
from rl_coach.architectures.middleware_parameters import FCMiddlewareParameters, LSTMMiddlewareParameters
from rl_coach.architectures.mxnet_components.architecture import MxnetArchitecture
from rl_coach.architectures.mxnet_components.embedders import ImageEmbedder, VectorEmbedder
from rl_coach.architectures.mxnet_components.embedders import ImageEmbedder, TensorEmbedder, VectorEmbedder
from rl_coach.architectures.mxnet_components.heads import Head, HeadLoss, PPOHead, PPOVHead, VHead, QHead
from rl_coach.architectures.mxnet_components.middlewares import FCMiddleware, LSTMMiddleware
from rl_coach.architectures.mxnet_components import utils
from rl_coach.base_parameters import AgentParameters, EmbeddingMergerType
from rl_coach.spaces import SpacesDefinition, PlanarMapsObservationSpace
from rl_coach.spaces import SpacesDefinition, PlanarMapsObservationSpace, TensorObservationSpace
class GeneralMxnetNetwork(MxnetArchitecture):
@@ -172,7 +172,9 @@ def _get_input_embedder(spaces: SpacesDefinition,
.format(input_name, allowed_inputs.keys()))
type = "vector"
if isinstance(allowed_inputs[input_name], PlanarMapsObservationSpace):
if isinstance(allowed_inputs[input_name], TensorObservationSpace):
type = "tensor"
elif isinstance(allowed_inputs[input_name], PlanarMapsObservationSpace):
type = "image"
def sanitize_params(params: InputEmbedderParameters):
@@ -187,8 +189,10 @@ def _get_input_embedder(spaces: SpacesDefinition,
module = VectorEmbedder(embedder_params)
elif type == 'image':
module = ImageEmbedder(embedder_params)
elif type == 'tensor':
module = TensorEmbedder(embedder_params)
else:
raise KeyError('Unsupported embedder type: {}'.format(type))
raise KeyError('Unsupported embedder type: {}'.format(type))
return module

View File

@@ -1,4 +1,5 @@
from .image_embedder import ImageEmbedder
from .vector_embedder import VectorEmbedder
from .tensor_embedder import TensorEmbedder
__all__ = ['ImageEmbedder', 'VectorEmbedder']
__all__ = ['ImageEmbedder', 'VectorEmbedder', 'TensorEmbedder']

View File

@@ -0,0 +1,52 @@
#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import List
import tensorflow as tf
from rl_coach.architectures.tensorflow_components.layers import Conv2d, Dense
from rl_coach.architectures.tensorflow_components.embedders.embedder import InputEmbedder
from rl_coach.base_parameters import EmbedderScheme
from rl_coach.core_types import InputTensorEmbedding
class TensorEmbedder(InputEmbedder):
"""
A tensor embedder is an input embedder that takes a tensor with arbitrary dimension and produces a vector
embedding by passing it through a neural network. An example is video data or 3D image data (i.e. 4D tensors)
or other type of data that is more than 1 dimension (i.e. not vector) but is not an image.
NOTE: There are no pre-defined schemes for tensor embedder. User must define a custom scheme by passing
a callable object as InputEmbedderParameters.scheme when defining the respective preset. This callable
object must accept a single input, the normalized observation, and return a Tensorflow symbol which
will calculate an embedding vector for each sample in the batch.
Keep in mind that the scheme is a list of Tensorflow symbols, which are stacked by optional batchnorm,
activation, and dropout in between as specified in InputEmbedderParameters.
"""
def __init__(self, input_size: List[int], activation_function=tf.nn.relu,
scheme: EmbedderScheme=None, batchnorm: bool=False, dropout_rate: float=0.0,
name: str= "embedder", input_rescaling: float=1.0, input_offset: float=0.0, input_clipping=None,
dense_layer=Dense, is_training=False):
super().__init__(input_size, activation_function, scheme, batchnorm, dropout_rate, name, input_rescaling,
input_offset, input_clipping, dense_layer=dense_layer, is_training=is_training)
self.return_type = InputTensorEmbedding
assert scheme is not None, "Custom scheme (a list of callables) must be specified for TensorEmbedder"
@property
def schemes(self):
return {}

View File

@@ -27,7 +27,7 @@ from rl_coach.architectures.tensorflow_components.architecture import TensorFlow
from rl_coach.architectures.tensorflow_components import utils
from rl_coach.base_parameters import AgentParameters, EmbeddingMergerType
from rl_coach.core_types import PredictionType
from rl_coach.spaces import SpacesDefinition, PlanarMapsObservationSpace
from rl_coach.spaces import SpacesDefinition, PlanarMapsObservationSpace, TensorObservationSpace
from rl_coach.utils import get_all_subclasses, dynamic_import_and_instantiate_module_from_params, indent_string
@@ -116,10 +116,12 @@ class GeneralTensorFlowNetwork(TensorFlowArchitecture):
raise ValueError("The key for the input embedder ({}) must match one of the following keys: {}"
.format(input_name, allowed_inputs.keys()))
mod_names = {'image': 'ImageEmbedder', 'vector': 'VectorEmbedder'}
mod_names = {'image': 'ImageEmbedder', 'vector': 'VectorEmbedder', 'tensor': 'TensorEmbedder'}
emb_type = "vector"
if isinstance(allowed_inputs[input_name], PlanarMapsObservationSpace):
if isinstance(allowed_inputs[input_name], TensorObservationSpace):
emb_type = "tensor"
elif isinstance(allowed_inputs[input_name], PlanarMapsObservationSpace):
emb_type = "image"
embedder_path = 'rl_coach.architectures.tensorflow_components.embedders:' + mod_names[emb_type]