1
0
mirror of https://github.com/gryf/coach.git synced 2025-12-17 19:20:19 +01:00

Numpy shared running stats (#97)

This commit is contained in:
Gal Leibovich
2018-11-18 14:46:40 +02:00
committed by GitHub
parent e1fa6e9681
commit 6caf721d1c
10 changed files with 226 additions and 114 deletions

View File

@@ -25,7 +25,7 @@ from six.moves import range
from rl_coach.agents.agent_interface import AgentInterface
from rl_coach.architectures.network_wrapper import NetworkWrapper
from rl_coach.base_parameters import AgentParameters, DistributedTaskParameters
from rl_coach.base_parameters import AgentParameters, DistributedTaskParameters, Frameworks
from rl_coach.core_types import RunPhase, PredictionType, EnvironmentEpisodes, ActionType, Batch, Episode, StateType
from rl_coach.core_types import Transition, ActionInfo, TrainingSteps, EnvironmentSteps, EnvResponse
from rl_coach.logger import screen, Logger, EpisodeLogger
@@ -110,14 +110,27 @@ class Agent(AgentInterface):
self.output_filter = self.ap.output_filter
self.pre_network_filter = self.ap.pre_network_filter
device = self.replicated_device if self.replicated_device else self.worker_device
# TODO-REMOVE This is a temporary flow dividing to 3 modes. To be converged to a single flow once distributed tf
# is removed, and Redis is used for sharing data between local workers.
# Filters MoW will be split between different configurations
# 1. Distributed coach synchrnization type (=distributed across multiple nodes) - Redis based data sharing + numpy arithmetic backend
# 2. Distributed TF (=distributed on a single node, using distributed TF) - TF for both data sharing and arithmetic backend
# 3. Single worker (=both TF and Mxnet) - no data sharing needed + numpy arithmetic backend
if hasattr(self.ap.memory, 'memory_backend_params') and self.ap.algorithm.distributed_coach_synchronization_type:
self.input_filter.set_device(device, memory_backend_params=self.ap.memory.memory_backend_params)
self.output_filter.set_device(device, memory_backend_params=self.ap.memory.memory_backend_params)
self.pre_network_filter.set_device(device, memory_backend_params=self.ap.memory.memory_backend_params)
self.input_filter.set_device(device, memory_backend_params=self.ap.memory.memory_backend_params, mode='numpy')
self.output_filter.set_device(device, memory_backend_params=self.ap.memory.memory_backend_params, mode='numpy')
self.pre_network_filter.set_device(device, memory_backend_params=self.ap.memory.memory_backend_params, mode='numpy')
elif (type(agent_parameters.task_parameters) == DistributedTaskParameters and
agent_parameters.task_parameters.framework_type == Frameworks.tensorflow):
self.input_filter.set_device(device, mode='tf')
self.output_filter.set_device(device, mode='tf')
self.pre_network_filter.set_device(device, mode='tf')
else:
self.input_filter.set_device(device)
self.output_filter.set_device(device)
self.pre_network_filter.set_device(device)
self.input_filter.set_device(device, mode='numpy')
self.output_filter.set_device(device, mode='numpy')
self.pre_network_filter.set_device(device, mode='numpy')
# initialize all internal variables
self._phase = RunPhase.HEATUP

View File

@@ -15,33 +15,30 @@
#
import numpy as np
import pickle
import redis
import tensorflow as tf
import threading
from rl_coach.memories.backend.memory_impl import get_memory_backend
from rl_coach.utilities.shared_running_stats import SharedRunningStats
class SharedRunningStats(object):
class TFSharedRunningStats(SharedRunningStats):
def __init__(self, replicated_device=None, epsilon=1e-2, name="", create_ops=True, pubsub_params=None):
super().__init__(name=name, pubsub_params=pubsub_params)
self.sess = None
self.name = name
self.replicated_device = replicated_device
self.epsilon = epsilon
self.ops_were_created = False
if create_ops:
with tf.device(replicated_device):
self.create_ops()
self.pubsub = None
if pubsub_params:
self.channel = "channel-srs-{}".format(self.name)
self.pubsub = get_memory_backend(pubsub_params)
subscribe_thread = SharedRunningStatsSubscribe(self)
subscribe_thread.daemon = True
subscribe_thread.start()
self.set_params()
def set_params(self, shape=[1], clip_values=None):
"""
set params and create ops
:param shape: shape of the stats to track
:param clip_values: if not None, sets clip min/max thresholds
"""
def create_ops(self, shape=[1], clip_values=None):
self.clip_values = clip_values
with tf.variable_scope(self.name):
self._sum = tf.get_variable(
@@ -85,13 +82,6 @@ class SharedRunningStats(object):
def set_session(self, sess):
self.sess = sess
def push(self, x):
if self.pubsub:
self.pubsub.redis_connection.publish(self.channel, pickle.dumps(x))
return
self.push_val(x)
def push_val(self, x):
x = x.astype('float64')
self.sess.run([self._inc_sum, self._inc_sum_squared, self._inc_count],
@@ -138,23 +128,3 @@ class SharedRunningStats(object):
return self.sess.run(self.clipped_obs, feed_dict={self.raw_obs: batch})
else:
return self.sess.run(self.normalized_obs, feed_dict={self.raw_obs: batch})
class SharedRunningStatsSubscribe(threading.Thread):
def __init__(self, shared_running_stats):
super().__init__()
self.shared_running_stats = shared_running_stats
self.redis_address = self.shared_running_stats.pubsub.params.redis_address
self.redis_port = self.shared_running_stats.pubsub.params.redis_port
self.redis_connection = redis.Redis(self.redis_address, self.redis_port)
self.pubsub = self.redis_connection.pubsub()
self.channel = self.shared_running_stats.channel
self.pubsub.subscribe(self.channel)
def run(self):
for message in self.pubsub.listen():
try:
obj = pickle.loads(message['data'])
self.shared_running_stats.push_val(obj)
except Exception:
continue

View File

@@ -78,7 +78,7 @@ def start_graph(graph_manager: 'GraphManager', task_parameters: 'TaskParameters'
# let the adventure begin
if task_parameters.evaluate_only:
graph_manager.evaluate(EnvironmentSteps(sys.maxsize), keep_networks_in_sync=True)
graph_manager.evaluate(EnvironmentSteps(sys.maxsize))
else:
graph_manager.improve()

View File

@@ -46,11 +46,12 @@ class Filter(object):
"""
raise NotImplementedError("")
def set_device(self, device, memory_backend_params=None) -> None:
def set_device(self, device, memory_backend_params=None, mode='numpy') -> None:
"""
An optional function that allows the filter to get the device if it is required to use tensorflow ops
:param device: the device to use
:param memory_backend_params: parameters associated with the memory backend
:param mode: arithmetic backend to be used {numpy | tf}
:return: None
"""
pass
@@ -85,13 +86,13 @@ class OutputFilter(Filter):
duplicate.i_am_a_reference_filter = False
return duplicate
def set_device(self, device, memory_backend_params=None) -> None:
def set_device(self, device, memory_backend_params=None, mode='numpy') -> None:
"""
An optional function that allows the filter to get the device if it is required to use tensorflow ops
:param device: the device to use
:return: None
"""
[f.set_device(device, memory_backend_params) for f in self.action_filters.values()]
[f.set_device(device, memory_backend_params, mode='numpy') for f in self.action_filters.values()]
def set_session(self, sess) -> None:
"""
@@ -226,14 +227,14 @@ class InputFilter(Filter):
duplicate.i_am_a_reference_filter = False
return duplicate
def set_device(self, device, memory_backend_params=None) -> None:
def set_device(self, device, memory_backend_params=None, mode='numpy') -> None:
"""
An optional function that allows the filter to get the device if it is required to use tensorflow ops
:param device: the device to use
:return: None
"""
[f.set_device(device, memory_backend_params) for f in self.reward_filters.values()]
[[f.set_device(device, memory_backend_params) for f in filters.values()] for filters in self.observation_filters.values()]
[f.set_device(device, memory_backend_params, mode) for f in self.reward_filters.values()]
[[f.set_device(device, memory_backend_params, mode) for f in filters.values()] for filters in self.observation_filters.values()]
def set_session(self, sess) -> None:
"""

View File

@@ -17,10 +17,11 @@ from typing import List
import numpy as np
from rl_coach.architectures.tensorflow_components.shared_variables import SharedRunningStats
from rl_coach.architectures.tensorflow_components.shared_variables import SharedRunningStats, TFSharedRunningStats
from rl_coach.core_types import ObservationType
from rl_coach.filters.observation.observation_filter import ObservationFilter
from rl_coach.spaces import ObservationSpace
from rl_coach.utilities.shared_running_stats import NumpySharedRunningStats, NumpySharedRunningStats
class ObservationNormalizationFilter(ObservationFilter):
@@ -42,13 +43,19 @@ class ObservationNormalizationFilter(ObservationFilter):
self.supports_batching = True
self.observation_space = None
def set_device(self, device, memory_backend_params=None) -> None:
def set_device(self, device, memory_backend_params=None, mode='numpy') -> None:
"""
An optional function that allows the filter to get the device if it is required to use tensorflow ops
:param device: the device to use
:memory_backend_params: if not None, holds params for a memory backend for sharing data (e.g. Redis)
:param mode: the arithmetic module to use {'tf' | 'numpy'}
:return: None
"""
self.running_observation_stats = SharedRunningStats(device, name=self.name, create_ops=False,
if mode == 'tf':
self.running_observation_stats = TFSharedRunningStats(device, name=self.name, create_ops=False,
pubsub_params=memory_backend_params)
elif mode == 'numpy':
self.running_observation_stats = NumpySharedRunningStats(name=self.name,
pubsub_params=memory_backend_params)
def set_session(self, sess) -> None:
@@ -66,11 +73,9 @@ class ObservationNormalizationFilter(ObservationFilter):
self.last_mean = self.running_observation_stats.mean
self.last_stdev = self.running_observation_stats.std
# TODO: make sure that a batch is given here
return self.running_observation_stats.normalize(observations)
def get_filtered_observation_space(self, input_observation_space: ObservationSpace) -> ObservationSpace:
self.running_observation_stats.create_ops(shape=input_observation_space.shape,
self.running_observation_stats.set_params(shape=input_observation_space.shape,
clip_values=(self.clip_min, self.clip_max))
return input_observation_space

View File

@@ -17,10 +17,11 @@
import numpy as np
from rl_coach.architectures.tensorflow_components.shared_variables import SharedRunningStats
from rl_coach.architectures.tensorflow_components.shared_variables import TFSharedRunningStats
from rl_coach.core_types import RewardType
from rl_coach.filters.reward.reward_filter import RewardFilter
from rl_coach.spaces import RewardSpace
from rl_coach.utilities.shared_running_stats import NumpySharedRunningStats
class RewardNormalizationFilter(RewardFilter):
@@ -39,13 +40,18 @@ class RewardNormalizationFilter(RewardFilter):
self.clip_max = clip_max
self.running_rewards_stats = None
def set_device(self, device, memory_backend_params=None) -> None:
def set_device(self, device, memory_backend_params=None, mode='numpy') -> None:
"""
An optional function that allows the filter to get the device if it is required to use tensorflow ops
:param device: the device to use
:return: None
"""
self.running_rewards_stats = SharedRunningStats(device, name='rewards_stats',
if mode == 'tf':
self.running_rewards_stats = TFSharedRunningStats(device, name='rewards_stats', create_ops=False,
pubsub_params=memory_backend_params)
elif mode == 'numpy':
self.running_rewards_stats = NumpySharedRunningStats(name='rewards_stats',
pubsub_params=memory_backend_params)
def set_session(self, sess) -> None:

View File

@@ -462,11 +462,10 @@ class GraphManager(object):
"""
[manager.sync() for manager in self.level_managers]
def evaluate(self, steps: PlayingStepsType, keep_networks_in_sync: bool=False) -> bool:
def evaluate(self, steps: PlayingStepsType) -> bool:
"""
Perform evaluation for several steps
:param steps: the number of steps as a tuple of steps time and steps count
:param keep_networks_in_sync: sync the network parameters with the global network before each episode
:return: bool, True if the target reward and target success has been reached
"""
self.verify_graph_was_created()

View File

@@ -5,6 +5,7 @@ from rl_coach.core_types import TrainingSteps, EnvironmentEpisodes, EnvironmentS
from rl_coach.environments.gym_environment import GymVectorEnvironment, mujoco_v2
from rl_coach.exploration_policies.additive_noise import AdditiveNoiseParameters
from rl_coach.exploration_policies.e_greedy import EGreedyParameters
from rl_coach.filters.observation.observation_normalization_filter import ObservationNormalizationFilter
from rl_coach.graph_managers.basic_rl_graph_manager import BasicRLGraphManager
from rl_coach.graph_managers.graph_manager import ScheduleParameters
from rl_coach.schedules import LinearSchedule
@@ -48,7 +49,8 @@ agent_params.algorithm.distributed_coach_synchronization_type = DistributedCoach
agent_params.exploration = EGreedyParameters()
agent_params.exploration.epsilon_schedule = LinearSchedule(1.0, 0.01, 10000)
agent_params.pre_network_filter.add_observation_filter('observation', 'normalize_observation',
ObservationNormalizationFilter(name='normalize_observation'))
###############
# Environment #
###############

View File

@@ -0,0 +1,159 @@
#
# Copyright (c) 2017 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from abc import ABC, abstractmethod
import threading
import pickle
import redis
import numpy as np
from rl_coach.memories.backend.memory_impl import get_memory_backend
class SharedRunningStatsSubscribe(threading.Thread):
def __init__(self, shared_running_stats):
super().__init__()
self.shared_running_stats = shared_running_stats
self.redis_address = self.shared_running_stats.pubsub.params.redis_address
self.redis_port = self.shared_running_stats.pubsub.params.redis_port
self.redis_connection = redis.Redis(self.redis_address, self.redis_port)
self.pubsub = self.redis_connection.pubsub()
self.channel = self.shared_running_stats.channel
self.pubsub.subscribe(self.channel)
def run(self):
for message in self.pubsub.listen():
try:
obj = pickle.loads(message['data'])
self.shared_running_stats.push_val(obj)
except Exception:
continue
class SharedRunningStats(ABC):
def __init__(self, name="", pubsub_params=None):
self.name = name
self.pubsub = None
if pubsub_params:
self.channel = "channel-srs-{}".format(self.name)
self.pubsub = get_memory_backend(pubsub_params)
subscribe_thread = SharedRunningStatsSubscribe(self)
subscribe_thread.daemon = True
subscribe_thread.start()
@abstractmethod
def set_params(self, shape=[1], clip_values=None):
pass
def push(self, x):
if self.pubsub:
self.pubsub.redis_connection.publish(self.channel, pickle.dumps(x))
return
self.push_val(x)
@abstractmethod
def push_val(self, x):
pass
@property
@abstractmethod
def n(self):
pass
@property
@abstractmethod
def mean(self):
pass
@property
@abstractmethod
def var(self):
pass
@property
@abstractmethod
def std(self):
pass
@property
@abstractmethod
def shape(self):
pass
@abstractmethod
def normalize(self, batch):
pass
@abstractmethod
def set_session(self, sess):
pass
class NumpySharedRunningStats(SharedRunningStats):
def __init__(self, name, epsilon=1e-2, pubsub_params=None):
super().__init__(name=name, pubsub_params=pubsub_params)
self._count = epsilon
self.epsilon = epsilon
def set_params(self, shape=[1], clip_values=None):
self._shape = shape
self._mean = np.zeros(shape)
self._std = np.sqrt(self.epsilon) * np.ones(shape)
self._sum = np.zeros(shape)
self._sum_squares = self.epsilon * np.ones(shape)
self.clip_values = clip_values
def push_val(self, samples: np.ndarray):
assert len(samples.shape) >= 2 # we should always have a batch dimension
assert samples.shape[1:] == self._mean.shape, 'RunningStats input shape mismatch'
self._sum += samples.sum(axis=0).ravel()
self._sum_squares += np.square(samples).sum(axis=0).ravel()
self._count += np.shape(samples)[0]
self._mean = self._sum / self._count
self._std = np.sqrt(np.maximum(
(self._sum_squares - self._count * np.square(self._mean)) / np.maximum(self._count - 1, 1),
self.epsilon))
@property
def n(self):
return self._count
@property
def mean(self):
return self._mean
@property
def var(self):
return self._std ** 2
@property
def std(self):
return self._std
@property
def shape(self):
return self._mean.shape
def normalize(self, batch):
batch = (batch - self.mean) / (self.std + 1e-15)
return np.clip(batch, *self.clip_values)
def set_session(self, sess):
# no session for the numpy implementation
pass

View File

@@ -239,51 +239,6 @@ def squeeze_list(var):
return var
# http://www.johndcook.com/blog/standard_deviation/
class RunningStat(object):
def __init__(self, shape):
self._shape = shape
self._num_samples = 0
self._mean = np.zeros(shape)
self._std = np.zeros(shape)
def reset(self):
self._num_samples = 0
self._mean = np.zeros(self._shape)
self._std = np.zeros(self._shape)
def push(self, sample):
sample = np.asarray(sample)
assert sample.shape == self._mean.shape, 'RunningStat input shape mismatch'
self._num_samples += 1
if self._num_samples == 1:
self._mean[...] = sample
else:
old_mean = self._mean.copy()
self._mean[...] = old_mean + (sample - old_mean) / self._num_samples
self._std[...] = self._std + (sample - old_mean) * (sample - self._mean)
@property
def n(self):
return self._num_samples
@property
def mean(self):
return self._mean
@property
def var(self):
return self._std / (self._num_samples - 1) if self._num_samples > 1 else np.square(self._mean)
@property
def std(self):
return np.sqrt(self.var)
@property
def shape(self):
return self._mean.shape
def get_open_port():
import socket
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
@@ -590,3 +545,5 @@ def start_shell_command_and_wait(command):
def indent_string(string):
return '\t' + string.replace('\n', '\n\t')